Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиционные материалы жесткость

Материалы на основе полиамидов. Широкое применение в различных узлах трения находят антифрикционные композиционные материалы на основе полиамидов. Полиамиды благодаря наличию в основной полимерной цепи амидных фупп - NH- O- и, как следствие этого, сильных межмолекулярных связей отличаются от большинства промышленных полимеров высокими механическими свойствами, жесткостью, твердостью и стойкостью к ударным нагрузкам, повышенной усталостной прочностью и радиационной стойкостью.  [c.30]


Материалы с переменной плотностью по толщине применяют в конструкциях, нагружаемых перпендикулярно плоскости армирования [38]. У композиционных материалов, изготовленных по схеме 1.2, ж, наружные слои обладают высокой прочностью и жесткостью на изгиб и кручение, а внутренние — достаточным сопротивлением межслойному сдвигу. При наличии волокон, искривленных только в направлении х, изменение угла наклона О приводит к улучшению одних характеристик материала и ухудшению других (рис. 1.3). Комбинированная укладка прямых и искривленных волокон в направлении х (см. рис. 1.2, д, е) позволяет регулировать характеристики материала за счет их объемного соотношения.  [c.13]

На основе структурных схем, образованных системой двух нитей, создана и экспериментально проверена группа композиционных материалов толщиной от 1,5 до нескольких десятков миллиметров, используемых для создания силовых и теплозащитных конструкций. Жесткость при сдвиге и прочность этих материалов, как это будет показано в дальнейшем, существенно выше жесткости и прочности  [c.13]

Методы определения жесткости при сдвиге. Методы определения свойств композиционных материалов при сдвиге в отличие от испытаний на растяжение и сжатие более разнообразны как  [c.42]

Между рассмотренными вариантами армирования имеется принципиальное различие в их целевом предназначении. Для создаваемых на их основе композиционных материалов проектируется либо повышение жесткости на растяжение, либо улучшение сдвиговых свойств в определенной плоскости, либо их совместное увеличение во всем объеме. Так, у материалов, армированных в трех ортогональных направлениях согласно варианту 1, следует ожидать наибольшие значения модулей упругости в этих направлениях но сравнению со всеми остальными вариантами пространственного армирования. Такое же утверждение относительно модулей сдвига в трех главных плоскостях упругой симметрии следует для композиционного материала, армированного по варианту 3 с шестью направлениями армирования.  [c.88]

Другой формой симметрии материала является симметрия при вращении относительно некоторой оси. Говорят, что материал обладает осью симметрии порядка п, если его коэффициенты жесткости не изменяются после поворота относительно оси на угол 2п/п радиан. Возможный порядок оси симметрии равен 2, 3, 4, 6 и бесконечности. Ось второго порядка эквивалентна плоскости симметрии [34]. Оси симметрии порядка 3 и 4 не характерны для композиционных материалов, и здесь не рассматриваются. Обсуждение этих случаев содержится в книге Лехницкого [34].  [c.21]

Проектирование ферм из композиционных материалов таких, какие показаны, например, на рис. 1—4, осуществляется на основе методов, обычно используемых для расчета на прочность. Для того, чтобы определить жесткость, несущую способность или критическую нагрузку элемента фермы, изготовленного из композиционного материала, необходимо учитывать анизотропию и структуру материала [5, 64]. Коэффициенты местной устойчивости, прочность, собственные частоты и упругие постоянные материала определяются свойствами отдельных анизотропных слоев и характером их ориентации в слоистом материале. Эти вопросы и рассмотрены в настоящей главе. Отметим, что согласно принятому ранее определению фермы изгиб ее стержней из рассмотрения исключается.  [c.112]


Как показано на рис. 21, типовая трехслойная балка состоит из тонких наружных несущих слоев и заполнителя из относительно легкого материала. В трехслойных конструкциях из композиционных материалов несущие слои обычно состоят из совокупности армированных в различных направлениях элементарных слоев, а в качестве заполнителя применяют соты. Такие конструкции обладают высокой изгибной жесткостью при малой плотности и находят широкое применение.  [c.142]

Панели, подкрепленные стрингерами, часто рассчитывают без учета изгибной жесткости обшивки между стрингерами (за исключением зон, примыкающих к стрингеру в пределах так называемой эффективной ширины ). Однако такое конструктивное решение не типично для композиционных материалов, которые, как правило, используются в гладких или подкрепленных трехслойных сотовых панелях (или в конструкциях типа тонкого авиационного профиля со сплошным сотовым заполнителем).  [c.147]

Основными эффектами высшего порядка, которые здесь обсуждаются, являются деформации сдвига по толщине пластины и нормальные напряжения, ортогональные ее срединной плоскости. Достаточно давно было установлено, что податливость по отношению к касательным напряжениям, действующим по толщине, существенно снижает изгибную жесткость слоистых пластин из волокнистых композиционных материалов (Тарнопольский и др. [161] Розе [123] Тарнопольский и Розе [159, 160]). Известно также, что трансверсальные касательные напряжения вызывают расслоение материала, однако сравнительно недавно была выявлена роль нормальных трансверсальных напряжений при этой форме разрушения.  [c.191]

Все перечисленные теории применяются или могут быть применены к расчету оболочек из композиционных материалов. Однако из-за дополнительных трудностей, связанных с учетом анизотропии материала и наличием смешанных коэффициентов жесткости, предпочтение, как правило, отдается более простым теориям. Например, для сосудов давления, изготовленных из волокнистых материалов методом намотки, был разработан упрощенный вариант безмоментной теории, названный сетчатым анализом. Эта теория основана на упрощенной модели композиционного материала, согласно которой считается, что нагрузка воспринимается только волокнами, а жесткость связующего не учитывается [315].  [c.216]

Возможность исключения операций соединения при использовании композиционных материалов сулит большую экономию. Если две или три детали заменить одной, то стоимость как самой детали, так и оснастки резко снижается. Всевозможные ребра, выступы, рельеф поверхности и металлические вкладыши формуются как одно целое при прессовании детали, поэтому такие детали значительно более экономичны в сравнении с металлическими. При конструировании кузовов больших автомобилей для получения полых коробчатых сечений, исключающих необходимость специальных элементов жесткости, обычно используют соединения внахлестку.  [c.32]

В большинстве случаев при разработке проектов автомобильных кузовов, заменяя какой-либо материал, учитывают опыт его применения на практике. Например, если жесткость панели является лимитирующим фактором, толщина его относительно известного материала, должна быть обратно пропорциональна кубическому корню из отношения модулей упругости материалов при изгибе. Аналогичные расчеты могут быть проведены в случае, если определяющим является прочность на растяжение или сдвиговая прочность. Многократно подтвержденные результаты испытаний композиционных материалов дают основание считать, что поведение материалов может быть довольно точно предсказано.  [c.32]

Использование элементов жесткости способствует преодолению начальных девиаций контура, ведущих к разрушению оболочки, а использование внутреннего давления обеспечивает достижение теоретических значений. Из вышеприведенных выражений очевидно, что прочность и модуль упругости материала определяют конструкционное поведение оболочковых конструкций. Это именно те характеристики, уровень которых может быть значительно повышен применением композиционных материалов.  [c.40]

Конструктор стремится улучшить двигатель путем повышения КПД и (или) снижения массы. Композиционные материалы обеспечивают определенные преимущества в обоих направлениях. Повышенный уровень прочности и жесткости композиционных материалов позволит уменьшить число ступеней вентилятора и компрессора в результате увеличения нагрузок и окружной скорости лопаток.  [c.54]


При проектировании новых самолетов по результатам анализа и продувок моделей в аэродинамической трубе определяются величины подъемной силы и лобового сопротивления, возникающие в процессе различных стадий полета. Они, в свою очередь, используются для определения значений и распределения изгибающих моментов, крутящих нагрузок и сдвиговых усилий, действующих на крылья, фюзеляж и хвостовое оперение. При этом, естественно, должно учитываться много других факторов, в том числе сугубо специфических. Например, подвесные мотогондолы могут испытывать более высокие ускорения, чем самолет в целом, поэтому их размещение должно производиться с учетом тщательной балансировки изгибающих и крутящих моментов, действующих на крыло. При разработке больших самолетов на стадии предварительного проектирования отводится много счетно-машинного времени на анализ нагрузок и моментов с целью выбора оптимального внешнего контура конструкции. Проще говоря, проект самолета в целом представляет собой компромиссное решение между требованиями аэродинамики и возможностями конструктора. На начальной стадии проектирования решается также вопрос о выборе материалов. Повышенная прочность и жесткость композиционных материалов позволит конструкторам обеспечить утонение секций несущих поверхностей и повышение относительного размаха крыла по сравнению с алюминиевыми конструкциями.  [c.58]

Наличие арматуры с различными жесткостью и прочностью значительно расншряет диапазон свойств композиционных материалов с пространственной схемой армирования. Главные трудности — технологические, возникающие при создании сложных схем армирования, моделирующих структуру некоторых природных элементов, например, кристаллов, растений или биологических тканей [82, 112]. К настоящему времени накоплен значительный опыт создания и совершенствования технологии разных типов композиционных материалов с пространственными схемами армирования.  [c.3]

Свойства композиционных материалов формируются не только арматурой (ее свойствами), но и в большей степени ее укладкой. Варьируя угол укладки арматуры (слоя), можно получить заданную степень анизотропии свойств, а изменяя порядок укладки слоев и угол укладки их по толщине, можно эффективно управлять нзгиб-ными и крутильными жесткостями композиционного материала. Для достижения этой цели, а также для установления типа анизотропии материала, а следовательно, и числа определяемых характеристик, систему координат слоя обозначают индексами 1, 2, 3, а композиционного материала х, у, г. Угол укладки слоев в плоскости ху обозначают ос. Все это способствует выявлению наиболее общих закономерностей создания композиционных материалов, которые обусловлены главным требованием 1 классификации с точки зрения механики материалов — установления закона деформирования и зависимости свойств от угловой координаты. Поэтому подробную классификацию целесообразно проводить на основе конструктивных принципов. Исходя из них, все структуры можно разделить на две группы — слоистр, е и пространственно-армированные.  [c.4]

Высокие жесткость и прочность армирующих волокон, составляющие основу прочности и жесткости композиционных материалов, реализуются лишь в случае их определенного расположения по отношению к действующему полю напряжений (действующей нагрузке). Вследствие большого разнообразия нагрузок применяются различные схемы укладки арматуры. Варьируя направлением укладки слоев, можно получить слоистые материалы с различной ориентацией армирующих волокон, обладающие в плоскости укладки изотропными и анизотропными свойствами. Именно в возможности придания материалу оптимальной для каждого частного случая анизотропии заключается главное преимущество волокнистых композиционных материалов [44]. В зависимости от ориентации армирующих волокон в плоскости укладки слоистые структуры можно подразделить на следующие основные группы однонаправленные, ортогонально-армированные с переменным углом укладки волокон по толщине, перекрестно-армированные и хаотически-армированные.  [c.5]

Способы устранения отрицательных особенностей. Использование высоко-модульных, волокон. В целях увеличения жесткости композиционных. материалов ведутся интенсивные работы по созданию высокомодульных волокон. Наиболее распространенными в настоящее время высокомодульными волокнами, применяемыми в качестве арматуры для изготовления композиционных материалов, являются волокна бора, углерода, карбида кремния, бериллия, модуль упругости которых в 5 раз и более превышает модуль упругости стекловолокон [20, 33, 102]. Большой практический интерес вызывают также органические волокна типа PRD-49 Kevlar [113], удельная прочность и жесткость которых в 2—3 раза выше аналогичных характеристик стекловолокон [59, 113]. Появление волокон Kevlar вызвано стремлением создать легкие высокомодульные и высокопрочные волокна со стабильными свойствами при действии динамических нагрузок, резких изменений температуры и условий эксплуатации.  [c.7]

Особенности структурных свойств композиционных материалов на основе углеродных и борных волокон с традиционными схемами армирования исследованы в работах [20, 25, 33, 59, 70]. Анализ и сопоставление полученных данных по угле- и боро-пластикам с аналогичными данными типичных стеклопластиков [39, 71] свидетельствуют о том, что использование высокомодульных волокон при традиционных схемах армирования способствует лишь резкому увеличению жесткости материала в направлениях армирования при этом заметного возрастания других упругих и прочностных характеристик не происходит. Главной отличительной особенностью высокомодульных композиционных материалов является большая по сравнению со стеклопластиками анизотропия упругих свойств [25]. Для углепластиков увеличение анизотропии упругих свойств обусловлено также анизотропией самих армирующих волокон. Существенных различий по прочностной анизотропии между стеклопластиками и высокомодульными материалами нет, но абсолютные значения межслойной сдвиговой прочности и прочности на отрыв в трансверсальном направлении однонаправленных и ортогонально-армированных углепластиков в 1,5—3 раза ниже аналогичных характеристик стеклопластиков.  [c.7]


Наличие волокон с высокой жесткостью позволяет варьировать в самом широком диапазоне зависимость уд ль-ной прочности композиционных материалов от их удельной жесткости. Это обусловливает существенные преимущества композиционных материалов перед металлами, где удельная жесткость примерно постоянная при некотором изменении удельной прочности [15]. Управление удельной жесткостью и прочностью, а также другими физико-механическими характеристиками в плоскости армирования осуществляется нзд1енением укладки волокон или одноосных тканей различного плетения как в плоскости, так и по толщине пластины или изделия [2, 14]. При этом характеристики композиционных материалов перпендикулярно плоскости армирования практически не изменяются [25]. Варьирование укладки волокон приводит не только к изменению степени анизотропии свойств, при незначительном изменении сопротивления межслойному сдвигу и поперечному отрыву [20, 69]. Наличие переменной укладки по толщине приводит к существенному увеличению неоднородности структуры композиционного материала, что необходимо учитывать при расчете конструкций из таких материалов [2, 104]. Выбор закона укладки в плоскости и по толщине пакета подчиняется назначению конструкции. Таким образом, использование высокомодуль-пых волокон при традиционных схемах армирования, когда толщина изделия создается набором плоских армирующих элементов — ирепрегов или слоев ткани, не устраняет указанных выше отрицательных особенностей композиционных материалов.  [c.8]

В качестве арматуры пространственно-армированных композиционных, материалов используют как стекловолокно, жесткость которого сравнительно невелика, так н высокомодульные углеродные волокна. Наибольшее распространение углеродные волокна получили при создании трехмерноар-мированных материалов типа углерод-углерод [90, 91, 110, 111, 116, 123, 124, 125]. В настоящее время уже испытываются многомерные схемы армирования. Созданы и анализируются системы, имеющие пять и более направлений армирования. При равномерном расположении армирующих волокон по диагоналям куба (система четырех нитей) удается получить ква-зиизотропный материал, а изменяя соотношение арматуры в разных направлениях, можно создать материалы с заданными свойствами.  [c.10]

Композиционные материалы на основе системы двух нитей целесообразно изготовлять из различных по механическим свойствам армирующих волокон. Высокомодульнь]е углеродные или борные волокна могут быть расположены в направлении утка и частично в направлении основы. Арматуру, искривленную в направлении основы, изготовляют из стекловолокна. При таком комбинировании разных волокон можно значительно повысить жесткость и прочность в направлении основы и утка без заметного снижения прочности на отрыв в трансверсальном направлении и сопротивляемости сдвигу. Хороший эффект в повышении монолитности и надежности таких структур достигается также за счет модифицирования волокон 34].  [c.12]

Структура, образованная системой четырех нитей, перспективная в целях повышения жесткости при сдвиге материала в главных плоскостях по сравнению с жесткостью ортогональной трехнамравленной структуры. Композиционные материалы 40 имеют максимальные значения модулей сдвига в главных плоскостях кубической симметрии. Модули Юнга в главных осях минимальнь максимальные значения — в направлениях армирования — вдоль диагоналей куба. Создание этих материалов сложнее, чем  [c.16]

Феноменологическое исследование механических свойств композиционных материалов может быть проведено двумя путями. Первый основан на рассмотрении армирующего материала как конструкции и учитывает реальную структуру композиции. В этом случае задача состоит в установлении зависимостей между усредненными напряжениями и деформациями. Второй путь основан на рассмотрении армированных материалов как квазноднородных сред и использовании традиционных для механики твердых деформируемых тел средств и методов их описания. Краткая схема аналитического расчета упругих констант композиционного материала методом разложения тензоров жесткости и податливости в ряд по объемным коэффициентам армирования приведена в монографии [60, 83]. Установлено, что при малом содержании арматуры можно ограничиться решением задачи для отдельного волокна, находящегося в бесконечной по объему матрице. Однако такой подход заведомо приводит к грубым погрешностям при расчете упругих характеристик пространственно армированных материалов, объем которых заполнен арматурой на 40—70 %. К тому же следует учесть, что пространственное расположение волокон в этих материалах приводит к росту трудностей при решении задачи теории упругости по определению напряженно-деформированного состояния в многосвязанной области матрица—волокно. Коэффициент армирования при этом входит в расчетные выражения нелинейно, что приводит к очередным трудностям реализации метода разложения упругих констант материала по концентрациям его компонентов.  [c.55]

Увеличение жесткости армирующих волокон приводит к линейному изменению упругих характеристик композиционных материалов, образованных системой двух нитей. Применение волокон с повышенной жесткостью весьма эффективно при создании композиционных материалов с высокой еднп-говой жесткостью [25]. Увеличение жесткости матрицы не приводит к существенному увеличению сдвиговой жесткости высокомодульных композиционных материалов.  [c.95]

Переход к высокомодульным композиционным материалам вызывает необходимость исследования зависимости упругих констант материала от параметра, представляющего собой отвошение жесткостей арматуры и связующего. На рис. 5.8 показано изменение относительных значений  [c.141]

Как следует из сравнения значений модуля упругости, наличие- искривленных волокон в трехмерноармиро-ванных материалах существенно снижает их жесткость при растяжении и сжатии. Разброс значений их упругих постоянных незначителен (см. табл. 5.7—5.8). Анализ экспериментальных данных для всех исследованных композиционных, , материалов  [c.151]

Упругие и прочностные свойства композиционных материалов, армированных вискеризованными волокнами, определяются не только основной арматурой и матрицей, но и свойствами, объемным содер.жанием и упаковкой нитевидных кристаллов. Влияние последних на изменение свойств материалов, зависящих в основном от жесткости и прочности модифицированной матрицы, является доминирующим. Это следует из анализа экспериментальных данных, приведенных на рис. 7.8. Коэффициент вариации для Rx , йх2, превышал 10 %  [c.213]

Опытные данные, представленные на рис. 7.9, типичны для композиционных материалов, изготовленных на основе тканей. Изменение содержания нитевидных кристаллов влияет на жесткость и прочность материалов на основе вискеризованной ткани. Ха-  [c.213]

В главе 4 представлен подробный обзор исследований, посвященных статике, устойчивости и динамике пластин из композиционных материалов. Рассмотрены феноменологические соотношения упругости для пластин из однонаправленных композиционных материалов, находящихся в условиях плоского напряженного состояния, матрицы жесткости для тонких слоистых пластин, теории малых и больших прогибов тонких пластин, толстые слоистые и трехслойные плиты. Для всех типов пласТин приведены основные гипотезы, теоретические соотношения, подробно рассмотрены различные частные случаи. Анализ дан в предположении, что материал линейно упругий и установлены случаи, для которых это предположение нарушается.  [c.10]


В теории механических колебаний балок из композиционных материалов, а также других конструкций можно выделить два основных направления (они обсуждаются в работах [34, 1 ]) метод эффективных модулей и метод эффективных жесткостей. Согласно первому методу композиционный материал в задачах динамики рассматривается как однородный и ортотроппый (свойства такого условного материала соответствуют исходному материалу), а согласно второму — по упругим постоянным волокон и связующего и геометрическим параметрам находят эффективные жесткости . Эти методы приводят к различным уравнениям движения. и граничным условиям. Значение метода эффективных жесткостей заключается в возможности описывать волновую дисперсию, кроме того, он более эффективен в задачах о распространении волн. Проблема распространения волн в композиционных материалах здесь не обсуждается. Отметим только, что она рассмотрена в работах [40, 6, 16, 82]. В задачах динамики конструкций из композиционных материалов метод эффективных жесткостей получил более широкое распространение. Для балок из слоистых композиционных материалов наиболее эффективна разновидность метода, которая изложена в работе [77] и описана ниже..  [c.138]

Безмоментная теория. В этой наиболее простой теории полностью пренебрегают изгибной жесткостью оболочки и рассматривают только эффекты,-связанные деформированием (растяжением, сжатием и сдвигом) срединной поверхности (см. [159], гл. 4). Применительно к оболочкам из композиционных материалов она использовалась, например, в работе Хартунга [115].  [c.214]

Рассмотрим распространение упругих волн в телах, состояпщх из чередующихся слоев с различной жесткостью и плотностью. Такая модель использовалась многими авторами для анализа дисперсии в композиционных материалах 1134, 166]. Исследуемая проблема представляет большой интерес для сейсмологии и рассматривалась применительно к ней [148]. С точки зрения основного подхода такая система аналогична системе дискретных связанных звеньев, описанной в работе Бриллоуина [37].  [c.287]

К исследованию упругопластических материалов впервые прямой метод жесткостей применили Галлагер с соавторами [13], одновременно использовавшие метод начальных деформаций. Хронологический перечень более поздних работ по применению прямого метода хлесткостей с одновременным применением метода начальных деформаций или же метода касательного модуля можно найти в труде Маркала [22]. В большинстве этих работ исследуется распределение напряжений около отверстий, вырезов и прочих разрывов в плоских пластинах, на которые действуют нагрузки, лежащие в плоскости пластины. Предполол<ив, что на месте такого разрыва находится включение той же формы (например, волокно), отличное по своим свойствам от исходного материала, приходим к рассмотрению композиционных материалов. Современное состояние метода конечных элементов описано в очень многих работах, в частности в работе Зенкевича [41].  [c.225]

Впервые упрочненный пластик был использован в серийном производстве 5000 кабин для компании White Motor. Детали для кабин были отформованы под давлением на модельных плитах, а их соединение осуществлено путем склеивания. Плавные закругления при использовании пластика, а также наличие элементов, повышающих жесткость панелей, определили своеобразный стиль кабины. В результате существенных изменений, внесенных в конструкцию шасси, через несколько лет эту модель сняли с производства, однако многие автомобили все еще находятся в эксплуатации, имея общий пробег в миллион миль. Успех этой модели, а также многочисленных кабин-прототипов, изготовленных ручным формованием, и некоторых специальных моделей как в США, так и в других странах привел к общему признанию композиционных пластиков как вполне пригодных для деталей тяжелых грузовиков. В настоящее время композиционные материалы широко используются в спальных отсеках.  [c.24]

Борные волокна позволили получить первый истинно композиционный материал для авиационно-космической техники. Преимущества борных волокон состоят не только в том, что они обладают высокими показателями удельных механических свойств, но и в том, что их использование возможно в сочетании как со связующими, ранее разработанными для стеклопластиков, так и с алюминием. Поскольку авиационные конструкции обычно проектируются с учетом требований как по жесткости, так и по прочности, композиционные материалы на основе борных волокон эффективнее использовать в тех агрегатах, в которых малые деформации должны сочетаться с высокой прочностью. Борное волокно пока еще относительно дорогой материал, хотя его стоимость не столь велика, как указывается в некоторых источниках. Пауэрс [16], например, считает, что цена борного волокна до некоторой степени зависит от уровня цен и технологии получения других волокон. Относительно высокий спрос и усовершенствование процессов изготовления могли бы обеспечить снижение цены на борное волокно до 110 доллар/кг.  [c.46]

В качестве примера использования стеклопластиков можно привести ограждение кабины пилота большого военного вертолета, которое может найти применение и в транспортных самолетах. Оно состоит из стеклопластиковых обшивок, трехслойпых сотовых панелей и элементов жесткости из армированного иено-пласта. Хотя эта конструкция вспомогательная, она представляет собой наиболее крупный агрегат из композиционных материалов на любом вертолете.  [c.49]


Смотреть страницы где упоминается термин Композиционные материалы жесткость : [c.36]    [c.74]    [c.82]    [c.83]    [c.98]    [c.185]    [c.215]    [c.131]    [c.158]    [c.42]    [c.55]   
Промышленные полимерные композиционные материалы (1980) -- [ c.180 ]



ПОИСК



Жесткость материала

Композиционные материалы



© 2025 Mash-xxl.info Реклама на сайте