Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Композиция волокон

Значительное влияние на свойства композиций при повышенных температурах может оказывать физико-химическое взаимодействие между волокнами и матрицей, приводящее к растворению или разупрочнению волокон н образованию прослоек хрупких фаз на границе раздела.  [c.637]

Композиционные металлические материалы. Эти материалы представляют собой композиции из высокопрочных волокон и основы (матрицы) — из мягких металлов, в частности алюминия.  [c.37]


Если связь между компонентами композиции недостаточно прочная, касательные напряжения, появляющиеся на границе раздела, могут вызвать расслоение материала — отделение матрицы от волокон. Прочность связи зависит от метода получения армированных композиций.  [c.159]

Для волокнистых композиций с двухмерной периодической решеткой будут только два базисных вектора, расположенных в плоскости, ортогональной к направлению волокон, однако и будет обладать аналогичными свойствами.  [c.290]

Рис. 14. Изменение скоростей продольных (распространяющихся вдоль волокон) волн в стержнях из композиции стальная проволока — эпоксидное связующее при различном объемном содержании проволоки [127] Рис. 14. <a href="/info/437938">Изменение скоростей</a> продольных (распространяющихся вдоль волокон) волн в стержнях из композиции <a href="/info/38958">стальная проволока</a> — эпоксидное связующее при различном объемном содержании проволоки [127]
Сложность оценки эффективности композиционных материалов проявляется уже при рассмотрении различных марок стеклопластиковых материалов. Помимо перечисленных в полном каталоге крученых волокон с различными прядением и относительным распределением волокон в основе и в утке, для изготовления композиций применяют еще и ровницу, маты из рубленого волокна и множество матричных материалов.  [c.203]

Графическое представление основных способов упрочнения, указанных в табл. 2, приведено на рис. 4. Следует заметить, что неупрочненный полиэфир имеет прочность на сжатие больше, чем на растяжение. Однако по мере увеличения содержания стекла, прочность на растяжение повышается и становится выше прочности на сжатие, так как действие волокон более эффективно при растяжении. При использовании в качестве наполнителя рубленых стеклянных волокон получаются промежуточные свойства между полиэфиром и композицией, упрочненной стеклотканью.  [c.207]

Применение композиционных материалов в судостроении начинается со второй мировой войны, когда были проведены первые эксперименты с упрочненными пластиками. Были опробованы многие композиции, и среди первых — фенольные смолы, упрочненные бумагой и полотном. Однако вскоре стало очевидным, что наиболее перспективным для морских условий было бы сочетание стеклянных волокон с эпоксидными либо полиэфирными смолами. Эти стеклопластики обеспечивали прочность, стабильность свойств, низкую плотность, сопротивление действию окружающей среды, простоту изготовления, т. е. качества, необходимые для серийного производства крупногабаритных морских изделий, таких, как корпуса лодок. В настоящее время соединение из термореактивной полиэфирной смолы, упрочненной стеклотканью, почти повсеместно принято в качестве основного композиционного материала, использующегося в морских условиях. В 1971 г. в промышленности, изготовляющей небольшие лодки для гражданских и военных целей, было использовано в стеклопластиках 54 000 т стеклянного упрочнителя и 117 000 т полиэфирной смолы. Из этого материала было изготовлено почти 50% общего числа выпущенных лодок.  [c.233]


Высококачественные волокна. Применение в судостроении волокон углерода, графита и бора, обладающих хорошими эксплуатационными характеристиками и используемых в авиации, весьма ограничено из-за их чрезвычайной дороговизны. Стоимость одного фунта упрочняющего материала может быть в 200 раз больше стоимости одного фунта обычного стекла. Технологические процессы изготовления деталей из таких композиций относительно сложны и не совместимы с экономикой судостроительной про-  [c.235]

В настоящее время все большее внимание уделяется композиционным материалам на металлической основе, армированной высокомодульными углеродными волокнами. Совместимость армирующего компонента и матрицы в некоторых случаях достигается введением связующего, функцию которого выполняет покрытие. Металлические покрытия необходимы в тех случаях, когда матрица не смачивает поверхность углеродных волокон при температурах получения композиции (алюминий, магний [21), Кроме того, покрытие углеродных волокон такими металлами, как цинк и медь, может впоследствии служить основой или компонентом основы композиционного материала [3].  [c.129]

Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5].  [c.148]

В волокнистых композициях матрица скрепляет волокна или другие упрочняющие элементы в единый монолит, защищая их от повреждений. Матрица является средой, передающей нагрузку на волокна, а в случае разрушения отдельных волокон перераспределяет напряжения. Кроме того, ее механические свойства опре-  [c.5]

Структура, взаимодействие компонентов и механические свойства композиционных материалов в значительной мере зависят от методов и режимов их изготовления [54]. Так, например, ири изготовлении композиции по режимам, характеризующимся отклонением параметров процесса от оптимальных в сторону снижения температуры, давления и сокращения времени выдержки, реализуется лишь начальная стадия физико-химического взаимодействия компонентов механизм разрушения полученного композиционного материала определяется в этом случае прочностью связи матрицы с волокном. Материал ири нагружении разрушается за счет накопления трещин на границе матрица—волокно и последующего раздельного разрыва частично связанного пучка армирующих волокон и матрицы. Разрыв какого-либо волокна приводит обычно к отслоению его от матрицы, вследствие чего в процессе дальнейших испытаний данное волокно не несет нагрузки. При таком механизме матрица разрушается с образованием воронок вокруг индивидуальных волокон или их комплексов зона разрушения матрицы обычно локализована в плоскости, перпендикулярной к направлению нагрузки волокна выдернуты из матрицы на значительную длину, область разрывов отдельных волокон распределена вдоль оси образца. Такой материал характеризуется высокой ударной вязкостью, сравнительно невысокой прочностью ири растяжении, низкими значениями циклической прочности, прочности при сдвиге, сжатии, изгибе, кручении и т. д.  [c.10]

При оптимальных режимах изготовления композиционного материала реализуется, как правило, и оптимальная степень физико-химического взаимодействия компонентов механизм разрушения полученной композиции определяется в основном прочностью самих армирующих волокон, причем вследствие возросшей прочности связи матрицы с волокнами разрыв отдельных волокон не сопровождается отслоением их от матрицы, так что разорванные волокна продолжают нести нагрузку (за исключением участков вблизи обрыва, длина которых меньше критической), т. е. осуществляется локализация разрывов волокон.  [c.11]

Таким образом, в композиционной системе сочетаются два противоположных свойства, необходимых для конструкционных материалов — высокий предел прочности и достаточная вязкость разрушения. Высокая прочность достигается за счет использования хрупких высокопрочных волокон, а достаточная вязкость разрушения обусловлена пластичной матрицей и специфическим механизмом рассеяния энергии разрушения композиции. Кроме 12  [c.12]


Величина растягивающих напряжений а на волокне зависит от многих факторов отношения If/df, от количества присутствующих в композиции волокон, от величины приложенной нагрузки, от механических свойств волокна И матрицы и сил сцепления на поверхности раздела волокно—матрица. Доу гюказал [11], что для усов a-AlgOg в алюминиевой матрице с целью достижения максимального упрочнения последней необходимо выдерживать для усов соотношение 1с 30 df. Саттон (11) нашел, что а с линейно зависит от объемного содержания усов. На рис. 128 приведена прочность композиции в зависимости от If/df при df = onst. При этом видно, что усы несут полную расчетную нагрузку при If > а если If < 1с или If << то Ос снижается. Было показано также, что т никогда не достигает большой величины на концах уса, если отсутствует пластическое течение матрицы если же матрица пластически деформируется, то касательное напряжение х на границе волокно— матрица заметно возрастает [ 11 ].  [c.170]

В современной технологии композиционных материалов все большее место занимают волокнистые материалы, представляющие собой композицию из мягкой матрицы (оспоБы) и высокопрочных волокон, армирующих матрицу. Материалы, упрочиепиые волокнами, характеризуются высокой удельной прочностью, а также могут иметь малую теплопроводность, высокую химическую и термическую стойкость и т. п. Для получения композиционных материалов используют различные волокна проволоки из вольфрама, молибдена, волокна оксидов алюминия, бора, карбида кремния, графита и т. п. —в зависимости от требуемых свойств создаваемого материала. Вопросами исследования и создания волокнистых материалов занимается новая, быстроразвивающаяся отрасль поронжовой металлургии — металлургия волокна.  [c.421]

Для обеспечения удароустойчивости основной слой может быть выполнен композициями на основе эпоксидной или полиэфирной смолы и- мирую-щих наполнителей — асбестовых, стеклянных или полимерных волокон.  [c.137]

Наибольшее значение для производства бумаг имеют волокна из лавсана и фзнилона. Производство бумаг из синтетических волокон может осуществляться двумя способами формования мокрым и сухим. По мокрому способу бумажное полотно получается на бумагоделательной машине из водной суспензии волокна, по сухому — путем специальных способов изготовления бумажного полотна сез помощи воды. Из-за отсутствия у синтетических волокон достаточных сил сцепления, аналогичных присущим волокнам целлюлозы, и в том и в другом случае применения синтетических волокон в производстве бумаги приходится прибегать к специальным связующим, обеспечивающим бумаге определенную механическую прочность. При изготовлении лавсановой бумаги мокрым способом это могут быть волокна поливинилового спирта. Сам поливиниловый спирт растворим в воде, но волокна из него можно получать с разной степенью растворимости. Лавсановая бумага применяется в композиции с пленкой лавсана. Возможно использование ее как подложки в производстве лент ИЗ слюдяных бумаг.  [c.174]

Материал матрицы Упрочняю1Цие волокна Соде ржанке волокон, % мат- рицы Предел прочное волокон ги, кГ/мм композиции  [c.109]

Феноменологическое исследование механических свойств композиционных материалов может быть проведено двумя путями. Первый основан на рассмотрении армирующего материала как конструкции и учитывает реальную структуру композиции. В этом случае задача состоит в установлении зависимостей между усредненными напряжениями и деформациями. Второй путь основан на рассмотрении армированных материалов как квазноднородных сред и использовании традиционных для механики твердых деформируемых тел средств и методов их описания. Краткая схема аналитического расчета упругих констант композиционного материала методом разложения тензоров жесткости и податливости в ряд по объемным коэффициентам армирования приведена в монографии [60, 83]. Установлено, что при малом содержании арматуры можно ограничиться решением задачи для отдельного волокна, находящегося в бесконечной по объему матрице. Однако такой подход заведомо приводит к грубым погрешностям при расчете упругих характеристик пространственно армированных материалов, объем которых заполнен арматурой на 40—70 %. К тому же следует учесть, что пространственное расположение волокон в этих материалах приводит к росту трудностей при решении задачи теории упругости по определению напряженно-деформированного состояния в многосвязанной области матрица—волокно. Коэффициент армирования при этом входит в расчетные выражения нелинейно, что приводит к очередным трудностям реализации метода разложения упругих констант материала по концентрациям его компонентов.  [c.55]

Эбботт и Браутман [1 ] продемонстрировали использование монотонного импульса для определения эквивалентных упругих постоянных композиций сталь — стекло и. -стекло — эпоксидное связующее. Этот метод применим, если длина участка нарастания напряжения и общая длина импульса велики по сравнению с размерами волокон, расстояниями между ними и поперечными  [c.303]

В то время как значительное число исследовательских и опытных работ было направлено на создание высокопрочных волокон и армированных ими композиций, Крафт и Элбрайт сосредоточили свои усилия на разработке оригинального метода направленной кристаллизации эвтектических сплавов [41]. Пользуясь этим методом, они закристаллизовали эвтектику А1 — СиАЬ и получили ориентированную двухфазную структуру. Хотя получение направленной структуры само по себе еще не означает создание композитного материала, Лемке и Крафт [45] в дальнейшем показали, что усы хрома, выросшие при направленной  [c.353]

Формование прессованием ограничено главным образом наличием модельных плит необходимого размера, а также станочного оборудования, используемого для производства модельных формовочных плит. С практической точки зрения размеры деталей, изготовляемых из формовочной массы или листовой композиции, зависят от отношения размера детали к его толшцне. Вследствие течения упрочняющего волокна вместе со смолой в процессе формования происходит переориентация волокон, что может приводить к возникновению локальных облаетей с пониженной прочностью, поэтому, во избежание этого явления, течение волокна должно быть сведено к минимуму.  [c.32]


Сл щегтвует бесчисленное множество вариантов взаимного расположения с ьев. При конструктивной проработке космических корабу-ей об-чно рассматривают набор слоев, ориентированных под угламй и, 45 и 90 , где 0 соответствует ориентации волокон параллельно направлению основной нагрузки. При таком наборе для наибольшей надежности следует разместить достаточное количество волокон во всех направлениях, чтобы обеспечить восприятие нагрузок, направленных вдоль, поперек и на срез. При этом композиция становится инвариантной к смоле это означает, что, в отличие от набора слоев с ориентацией под углами 0 и 30 , способность данного набора слоев воспринимать срезывающие нагрузки в плоскости не зависит от связующего. Расчеты показывают, что для типичного набора слоев с ориентацией под углами о, 45 и 90 снижение прочности смолы на 50% привело бы к снижению прочности композита всего на 10 %, что свидетельствует о надежности такого подхода. Желательность этого подхода, по крайней мере до тех пор, пока не будут хорошо поняты процессы деградациг матрицы, подтверждается последними ис-  [c.97]

Интересным приложением высокопрочных волокнистых композиций являются бурильные трубы лунной буровой установки корабля Аполлон . Трубы состоят из трех полых секций общей длиной 2800 мм. Стенки труб имеют внутренний и внешний слои из эпоксидного стеклопластика с ориентацией волокон 45 в промежутке между этими слоями помещается слой однонаправленного бороэпоксида. На внутренней поверхности выполнена спиральная резьба, образующая нечто вроде шнека, продвигающего лунный грунт вдоль внешней поверхности вала. Труба имеет электрический привод, обеспечивающий вращение и продольную подачу. Полые трубы дают возможность вводить приборы для измерения температуры грунта под поверхностью и тепловыделения из глубины. Это оборудование использовалось в ходе лунных экспериментов Аполлон-16 .  [c.117]

Разработка космического буксира находится в настоящее время в предэскизной стадии. Его назначение — перемещение спутников и других полезных нагрузок на орбите или перевод их на другую орбиту. Чтобы добиться создания достаточно легких конструкций, исследуется возможность использования очень тонких (25—75 мкм) слоев композиций на основе углеродных волокон.  [c.123]

В 1969 г. Лабораторией динамики полета ВВС США была начата разработка деталей главного шасси из композиционных материалов. Эти детали характеризуются сложной конфигурацией и многими конструктивными особенностями, отличающими их от элементов конструкции планера. Кроме того, шасси должно выдерживать высокие динамические нагрузки, возникающие в результате удара при посадке. Внешний обод бокового подкоса (рис. 27), образующий фланец, изготовлен непрерывной намоткой, обеспечивающей укладку слоев по схеме (0,/ 15/02)т- В работающей на сдвиг стенке материал имеет ориентацию слоев (Ог/гЫЗз) . Слоистый пластик на основе рубленых волокон использован для бобышек и узлов наружной подвески. Отверждение детали в сборе производится совместно с алюминиевыми втулками. Углепластиковый двухзвенник (рис. 28) также изготовлен из композиции на основе непрерывных и рубленых волокон и эпоксидной матрицы.  [c.167]

Биполимерный пластик, состоящий из поливинилхлорида и полиэфирного стеклопластика, был использован для изготовления смесительной камеры. При конструировании этой системы учитывалась стойкость поливинилхлорида к кислотам с высокой окисляющей способностью. Основными преимуществами таких биполимерных композиционных систем являются относительно высокая прочность в результате армирования термопластичного — термореактивного связующего стекловолокнистым наполнителем химическая стойкость как результат сочетания термопластов и термореактивных полимеров экономия оборудования стойкость против абразивного износа стойкость к УФ-излучению оптимальные эксплуатационные характеристики, сочетающиеся с химической стойкостью и стойкостью против абразивного износа по сравнению с композициями на основе органических волокон и связующего огнестойкость при добавлении к связующему трехокиси сурьмы.  [c.330]

На рис. 30 приведена кривая ползучести при изгибе для однонаправленного композита. В противоположность испытаниям на растяжение [66] изгибные испытания показывают ускоренную третью стадию ползучести перед разрушением. Кривые длительной прочности для композитов с 40%- и 60%-ным объемным содержанием волокон приведены на рис. 31, а некоторые дополнительные результаты для трансверсальных и перекрестно армированных композитов можно найти в [40]. Эти результаты не сопровождаются теоретическим анализом, они только указывают тип разрушения, который может возникнуть в такой бороалюминиевой композиции при одинаковых условиях нагружения.  [c.308]

Усталостная прочность волокнистых композитов — это свойство композиции, зависящее от комбинации свойств компонентов и поверхности раздела между ними. В результате этого композиционные материалы могут быть сконструированы для работы в условиях циклических нагрузок, во-первых, за счет выбора волокон и матрицы, имеющих подходящие свойства, и, во-вторых, за счет конструирования и контроля металлургической структуры поверхностей раздела. Последние данные указывают на то, что усталостную прочность современных бороалюминиевых композитов, например, можно существенно улучшить за счет контроля микроструктур поверхностей раздела.  [c.437]

Волокнистые композиции состоят из матрицы, содержащей упрочняющие одномерные элементы в форме волокон (проволоки), нитевидных кристаллов и др. Слоистыми композициями называются системы, состоящие из набора чередующихся двухмерных армирующих компонентов в виде листовых, пластинчатых и фольговых материалов, жестко связанных между собой по всей поверхности. К другой группе по структурным признакам относятся дисперсноупрочненные материалы, содержащие равномерно распределенные в объеме матрицы ультрадисперсные нуль-мерные частицы, не взаимодействующие активно с матрицей и не растворяющиеся в ней [57—59].  [c.5]

Особенность волокнистой композиционной структуры заключается в равномерном распределении, с повторяющейся геометрией, высокопрочных и высокомодульных волокон в пластичной матрице, содержание которых может колебаться от 15 до —75 об. %. В то же время в дисперсноупрочненных материалах оптимальным содержанием дисперсной фазы считается 2—4 об.%, кроме того, ультра-дисиерсные частицы в указанных материалах, в отличие от непрерывных и дискретных волокон в волокнистых композициях, создают только косвенное упрочнение, т. е. благодаря их присутствию стабилизируется структура, формирующаяся при деформационной термической обработке.  [c.6]

При высоких температурах, в этих материалах важное значение имеет форма зерна, т. е. отношение его длины I к диаметру d. Р. Фрэзер и Д. Эванс предложили рассматривать дисиерсноупроч-ненные материалы, как волокнистые композиции, в которых зерна, упрочненные дисперсными частицами, выполняют функцию волокон, а роль границ и прилегающих к ним областей сводится к передаче напряжений от волокна к волокну. В этом случае высокотемпературная прочность может быть повышена иутем увеличения площади границ, расположенных в направлении действующих напряжений, иутем увеличения отношения Hd.  [c.7]

Микроструктурные исследования композиций Ni — 2,5 об. % ThOj и Ni —2,5 об.% НЮа показали, что их экструдированное состояние характеризуется мелким зерном (1—2 мкм), ориентированным в направлении экструзии. При дальнейшей холодной или тепловой деформации образуется типичная волокнистая структура с размером волокон в поперечном сечении менее 1 мкм. Отжиг при температурах 1300—1400° С приводит к возникновению структурной неоднородности, характеризующейся, с одной стороны, образованием крупных зерен с характерными двойниками отжига и, с другой стороны, сохранением участков волокнистой структуры. Внутри мелких зерен наблюдаются плотные сплетения дислокаций и дислокационные субграницы различного типа, стыкующиеся с высокоугловыми границами зерен. В рассматриваемых материалах увеличивается температурный интервал существования полигональной структуры, и в этом состоит особенность их рекристаллизации [55].  [c.8]


В ряде случаев существенное влияние на структуру и свойства оказывает термическая обработка композиционного материала, например в боралюминиевой композиции, при использовании в качестве матрицы алюминиевых сплавов, предел прочности при растяжении в направлении поперек укладки волокон может быть увеличен в 2—3 раза за счет применения термической обработки. Прочность связи между компонентами и сдвиговые характеристики материалов, полученных сваркой взрывом или экструзией, могут быть улучшены в результате правильно выбранного режима отжига. Кроме того, термическая обработка может изменить структуру вследствие образования промежуточных фаз, положительное или отрицательное влияние которых на структуру и свойства следует учитывать.  [c.9]

Композиции, полученные при малых давлениях пропитки, характеризуются развитой поверхностью разрушения с вырывом отдельных волокон и обладают низкой прочностью. Те же композиции, полученные при средних, оптимальных давлениях, характе ризуются развитой щеповидной поверхностью разрушения (подоб ной поверхности излома древесины) и максимальной прочностью Например, для композиционного материала с алюминиевой матри цей (силумин), армированной волокнами карбида кремния, экспе риментально установлено оптимальное давление 5 кгс/см [81  [c.9]


Смотреть страницы где упоминается термин Композиция волокон : [c.16]    [c.199]    [c.703]    [c.704]    [c.140]    [c.174]    [c.145]    [c.305]    [c.14]    [c.116]    [c.120]    [c.483]    [c.484]    [c.263]   
Справочник по композиционным материалам Книга 2 (1988) -- [ c.113 ]



ПОИСК



Волокна

Композиция



© 2025 Mash-xxl.info Реклама на сайте