Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резисторы Материалы

Лазерную резку материалов осуществляют как в импульсном, так и в непрерывном режиме. При резке в импульсном режиме непрерывный рез получается в результате наложения следующих друг за другом отверстий. Наиболее широкое применение получила резка тонкопленочных пассивных элементов интегральных схем, например, с целью точной подгонки значений их сопротивления или емкости. Для этого применяют импульсные лазеры на алюмо-иттриевом гранате с модуляцией дробности, лазеры на углекислом газе. Импульсный характер обработки обеспечивает минимальную глубину прогрева материала и исключает повреждение подложки, на которую нанесена пленка. Лазерные установки различных типов позволяют вести обработку при следующих режимах энергия излучения 0,1. .. 1 МДж, длительность импульса 0,01. .. 100 мкс, плотность потока излучения до 100 мВт/см, частота повторения импульсов 100. .. 5000 импульсов в 1 G. В сочетании с автоматическими управляющими системами лазерные установки для подгонки резисторов обеспечивают производительность более 5 тысяч операций за 1 ч. Импульсные лазеры на алюмо-иттриевом гранате применяют также  [c.299]


Для испытания изоляционных материалов применяют статические регуляторы напряжения переменный резистор, автотрансформатор с переключателем числа витков, автотрансформатор с подвижной катушкой и индукционный регулятор (рис. 5-8). При небольшой мощности испытательного трансформатора (до 1 кВ-А) для регулирования напряжения может быть  [c.104]

Полупроводниковые терморезисторы имеют большой температурный коэффициент, достигающий значения — (0,02 ч- 0,06) и высокое начальное сопротивление — порядка 150 кОм. Для изготовления некоторых полупроводниковых терморезисторов используют спекаемые смеси окислов а) меди и марганца (серийно выпускаемые терморезисторы типа ММТ) б) кобальта и марганца (терморезисторы типа КМТ). Применяют и другие окислы, а также сульфиды, селениды, теллуриды и другие полупроводниковые материалы. Эти терморезисторы обладают более высокой чувствительностью и более низкой тепловой инерцией по сравнению с проволочными резисторами. Влияние удлинительных проводов в этом случае также не сказывается на результатах измерения. Однако свойства терморезисторов (воспроизводимость характеристик) в сильной степени зависит от технологии производства и наличия примесей.  [c.136]

Проводниковые материалы, в полном соответствии с названием, служат для проведения электрического тока (из них изготавливаются провода, резисторы, нагревательные элементы).  [c.5]

Проводниковые материалы находят применение в качестве проводов и жил кабелей, термоэлементов, припоев, предохранителей, нагревателей, для изготовления резисторов.  [c.9]

Тугоплавкие металлы имеют достаточно высокое р и сравнительно небольшой ТКр, Эти металлы и их сплавы применяются для изготовления нагревательных элементов, работающих в вакууме или в инертной среде, термопары для измерения высоких температур. Тонкие плёнки (десятки -сотни нанометров) тугоплавких материалов, нанесённые на диэлектрические подложки, используются в качестве резисторов в интегральных микросхемах.  [c.28]

Проводниковые материалы высокого сопротивления бывают металлические и неметаллические. Здесь рассматриваются только металлические, наибольшее применение среди которых имеют различные металлические сплавы. Классифицировать их можно по разным признакам, в том числе по области применения, определяющей и требования, предъявляемые к материалам. Материалы первой группы — для точных (прецизионных) электроизмерительных приборов и образцовых сопротивлений материалы второй группы — для резисторов (реостатов) различных назначений материалы третьей группы — с высокой рабочей температурой — для нагревательных приборов и нагрузочных реостатов. Ко всем этим материалам предъявляются следующие требования большое значение удельного сопротивления, достаточные механическая прочность и технологичность, обеспечивающие возможность получения проводок необходимых сечений и изготовления соответствующих изделий.  [c.256]


Основные области применения полупроводниковых материалов 1) выпрямительные и усилительные приборы разной МОЩНОСТИ на разные частоты неуправляемые и управляемые — диоды, транзисторы, тиристоры 2) нелинейные резисторы-варисторы 3) терморезисторы 4) фоторезисторы 5) фотоэлементы 6) термоэлектрические генера,-  [c.276]

По удельному электрическому сопротивлению р металлические проводниковые материалы можно разбить на две основные группы металлы высокой проводимости, у которых р при нормальной температуре составляет не более 0,05 мкОм-м, и металлы и сплавы высокого сопротивления, имеющие при тех же условиях р не менее 0,3 мкОм-м. Проводниковые материалы первой группы применяются в основном для изготовления обмоточных и монтажных проводов, жил кабелей различного назначения, шин и т. д. Проводниковые материалы второй группы используются при производстве резисторов, электронагревательных приборов, нитей ламп накаливания и т. п.  [c.111]

Предложено несколько способов корректирования АЧХ широкополосных преобразователей [22], проведение которого диктуется необходимостью компенсации частотно-зависимого затухания в призме преобразователя и в материале контролируемого изделия. Наиболее эффективный способ заключается в секционировании одного из электродов пьезоэлемента на несколько зон и включении в периферийные зоны корректирующих резисторов (см. рис. 3.27).  [c.171]

Такие материалы, как окись алюминия, стеатит и фарфор, часто применяют при изготовлении изоляторов, конденсаторов и вакуумных ламп. Окись алюминия обычно используется в виде листов для пленочных покрытий, в виде катушек для проволочных сопротивлений и в виде цилиндров для герметизации. В качестве сердечников пленочных резисторов используют также стеатит.  [c.398]

Сравнительные исследования свойств тонкопленочных компонентов, изготовленных на ситалле и других материалах, показали несомненное преимущество первых. Резисторы, изготовленные на ситалле, имеют меньший разброс сопротивлений по подложке, максимальный выход годных конден-  [c.418]

МАТЕРИАЛЫ ДЛЯ ТОНКОПЛЕНОЧНЫХ РЕЗИСТОРОВ  [c.433]

Тонкопленочные резисторы (ТПР) являются наиболее распространенными тонкопленочными элементами гибридных интегральных схем, формированию которых уделяется наибольшее внимание при производстве гибридных схем. Основными параметрами ТПР, определяющими выбор их конструкции и материалов для их изготовления, являются величина сопротивления, номинальная мощность рассеяния, временная и температурная стабильность, слабая зависимость удельного сопротивления от различных факторов технологического процесса (Армирования.  [c.433]

Рассеяние электронов на нарушениях симметрии упаковки подобного типа может значительно превышать рассеяние на тепловых колебаниях решетки, следствием чего будет резкое снижение ТКС. Поскольку одновременно со снижением ТКС происходит существенный рост общего удельного сопротивления, один из путей получения резистивных материалов для тонкопленочных резисторов состоит в создании сплавов с высоким удельным сопротивлением.  [c.439]

Резистивные пасты. В резистивных пастах функциональные материалы являются комбинацией проводников, изоляторов и полупроводников, в проводниках сопротивление композиции определяется главным образом свойствами контактов между металлическими частицами. В резистивных композициях истинная картина механизма проводимости неизвестна, но исходя из величин сопротивления, чувствительности резисторов к напряжению и характера температурной зависимости можно сделать вывод, что контакты между частицами имеют полупроводниковую природу.  [c.471]

Функциональные материалы. Для изготовления резисторов пригодно чрезвычайно большое количество материалов — благородные металлы и комбинации металлов с окислами. Из-за сложности и индивидуальных особенностей природы функциональных  [c.471]

Зависимость от температуры 220 — Таблицы 220 Сопротивления (резисторы) 242 — Материалы 220, 221  [c.999]

Получение информации об испытаниях. Подразделение надежности обычно не в состоянии обработать и использовать все отчеты о всех испытаниях, начиная от проверки резисторов до введения в эксплуатацию сложных систем. Но оно должно знать о существовании этих отчетов и иметь возможность быстро получить их для нахождения нужных сведений и подробных данных по интересующему вопросу. По заданию подразделения надежности эти материалы могут быть детально проработаны, а содержащиеся в них данные по интересующему вопросу представлены в удобной для использования стандартной форме. Обычно имеется ряд пунктов, по которым испытательная работа может быть выполнена подразделением надежности. Однако очень часто проведение таких работ не получает должного одобрения и поддержки у руководства проектами.  [c.78]


Методом испарения в вакууме или катодным распылением в инертном газе создают резистивные пленки из материала на основе твердого раствора дисилицидов титана и хрома. Изготовленные из них высокоомные и низкоомные пленочные резисторы интегральных схем имеют линейную зависимость электросопротивления от температуры в диапазоне 400 - 4,2 К и удельную мощность рассеяния до 2 кВт/см против 0,2 кВт/см для других известных материалов.  [c.205]

Проводники — материалы, имеющие удельное электросопротивление в пределах 10 - 10 Ом-м и возрастающее с увеличением температуры используют для проводников постоянного и переменного тока, резисторов, нагревательных элементов, контактов и т.п.  [c.569]

Материалы для пленочных резисторов  [c.170]

Полупроводниковые интегральные микросхемы (ПИМС) формируются из элементов (резисторов, конденсаторов, диодов, транзисторов и др.) внутри подложки. Подложка изготавливается из полупроводниковых материалов, обычно кремния или германия, и межэлементных соединений (проводников) на поверхности подложки. Размеры ПИМС порядка 1-5 мм .  [c.538]

Резистор служит для защиты трансформатора и кенотрона от перегрузки при пробое образца. В установке имеется сосуд с электродами для стандартного испытания жидких материалов. Испытания на постоянном токе производят при помощи схемы одно-полупериодного выпрямления, для получения которой используется кенотрон Л на образец подается постоянное напряжение отрицательной полярности. Если необходимо измерять ток утечки, то для этой цели используют микроамперметр рА в анодной цепи при разомкнутом выключателе КЗ. Защита микроамперметра от перегрузок осуществляется при помощи разрядника Р, шунтирующего конденсатор и резистор. Микроамперметр имеет несколько пределов измерения.  [c.119]

Тантал обладает способностью поглощать газы в диапазоне температуры 600.. 1200 С, он пластичен, нехрупок, легко сваривается с вольфрамом и молибденом, что делает тантал весьма ценным для изготовления деталей электровакуумных приборов, так как он является не только конструкционным материалом, но и поглотителем газов, которые выделяются другими деталями приборов. Однако из-за высокой стоимости тантал используется ггреимущественно для ответственных изделий, работающих в напряжённом тепловом режиме, или в тех случаях, когда к качеству вакуума предъявляются очень высокие требования. Кроме того, из тантала изготавливают тигли для плавки в высокотемпературных печах, тонкоплёночные резисторы в интегральных схемах, электроды танталовьтх конденсаторов  [c.30]

Стеклоэмалями или просто эмалями (не смешивать с лаковыми эмалями ) называются стекла, наносимые тонким слоем на поверхность металлических и других предметов с целью защиты от коррозии, придания определенной окраски и улучшения внешнего вида, создания отражающей поверхности (эмалированная посуда, абажуры, рефлекторы, декоративные эмали и т. п.). Эмали получаются сплавлением измельченных составных частей шихты, выливанием расплавленной массы тонкой струей в холодную воду и размолом полученной фритты на шаровой мельнице в тонкий порошок. Иногда к фритте перед ее размолом добавляются небольшие количества глины и других веществ. Для нанесения эмали на различные предметы нагретый в печи до соответствующей температуры предмет посыпается порошком эмали, которая оплавляется и покрывает его прочным стекловидным слоем если требуется, покрытие повторяется несколько раз до получения слоя нужной толщины во время оплавления эмалируемый предмет (например, трубчатый резистор) может медленно вращаться в печи для более равномерного покрытия. Важно, чтобы а/ эмали был приблизительно равен а материала, на который наносится эмаль, иначе эмаль будет давать мелкие трещины (цек) при резкой смене температур. При эмалировании предметов из стали или чугуна для улучшения сцепления эмали с металлом производят предварительное покрытие металла грунтовой эмалью (с содержанием оксидов никеля или кобальта) на нее уи е наносится основная эмаль любой окраски. Важная область применения стеклоэмалей в качестве электроизоляционных материалов — покрытие трубчатых резисторов. В этих резисторах на наружную поверхность керамической трубки нанесена проволочная обмотка (из нихрома или константана), поверх которой наплавляется слой эмали, создающий изоляцию между отдельными витками обмотки и окружающими предметами и защищающий обмотку от влаги, загрязнения и окисления кислородом воздуха при высокой рабочей температуре (примерно 300 °С), Кроме того, стеклоэмали используются в электроаппаратостроении для получения прочного и нагревостойкого электроизоляционного покрытия на металле, а также для устройства вводов в металлические вакуумные приборы. Стеклоэмали применяются и в качестве диэлектрика в некоторых типах конденсаторов.  [c.165]

Электроугольныь изделия. Из числа твердых неметаллических проводниковых материалов наибольшее значение имеют материалы на основе углерода (электротехнические угольные изделия, сокращенно электроугольные изделия). И.ч угля изготовляют щетки электрических машин, электроды для прожекторов, электроды для дуговых электрических печей и электролитических ванн, аноды гальванических элементов. Угольные порошки используют в микрофонах для создания сопротивления, изменяющегося от звукового давления. Из угля делают высокоомные резисторы, разрядники для телефонных сетей угольные изделия применяют в электровакуумной технике,  [c.226]

В качестве проводящих материалов непроволочных линейных резисторов могут быть использованы природный графит, сажа, пиролитический углерод, бороугле родистые пленки, а также высокоомные сплавы металлов и другие материалы.  [c.227]


По характеру изменения параметров элемента или системы различают внезапные и постепенные отказы. Внезапные отказы вызываются обычно причинами, которые не носят монотонного характера и действие которых проявляется внезапно во всем объеме (например, попадание стружки в патрон, которое препятствует загрузке заготовки появление деталей с большими припусками или заусенцами, приводящее к застреванию их в лотках, поломке инструментов и т. д.). Внезапные отказы характерны для элементов радиоаппаратуры и систем управления электронных ламп, полупроводников, резисторов, конденсаторов, особенно работающих в условиях ударов, ви браций, высоких температур. Постепенные отказы, как правило, являются следствием монотонных необратимых процессов, таких как износ, разрегулирование механизмов, старение материалов. Так, например, постепенное изнашивание уплотнений пневмоцилиндров фиксаторов, особенно при загрязнении штоков, приводит к утечке воздуха и падению давления в цилиндрах. Износ направляющих скалки питателя автооператора приводит к тому, что радиальное положение захвата автооператора с заготовкой в крайнем переднем положении становится все более неопределенным, заготовка не попадает в патрон шпинделя и блокирующее устройство выключает автооператор. Внезапные отказы большей частью являются следствием накопления необратимых 5зменений, которые до некоторого  [c.68]

Из выражении для сопротивления тонкопленочного резистора видно, что теоретически можно добиться бесконечно большого сопротивления даже в пленках благородных металлов, уменьшая их толщину. На практике добиться высокого поверхностного сопротивления пленок высокопроводя-щих материалов (Ап, Си, Ag) не удается в связи с физическими законами образования пленок.  [c.433]

Примером многослойной системы с материалами, образующими непрерывный ряд твердых растворов, являются контактные системы К]Сг—Си—N1, а также Т1—Рс1—Аи. Последняя система (7,5 нм Т1, 30 нм Рб и 1 мкм Аи) является одним из лучщих контактов к резисторам из ТэаЫ как по уровню шумов, так и по изменению механических характеристик, адгезии, величины переходного сопротивления.  [c.448]

Нарушение механической целостности пленок системы Н1Сг—Аи, Т1— Ац происходит в результате взаимодействия золота с материалом адгезивного слоя с образованием интерметаллидов. Чтобы воспрепятствовать этому взаимодействию, в систему Н1Сг—Аи вводится промежуточный слой палладия. Система Аи—Рй относится к системам с неограниченной растворимостью. Последнее обусловливает существенное повышение переходного сопротивления в зоне взаимной диффузии, прилегающей к разделу золото—палладий. Однако старение, сопровождающееся увеличением шума и понижением механической стабильности у этой системы, значительно меньше, что явилось причиной широкого распространения ее в качестве контактов к пленочным резисторам из нитрида тантала.  [c.449]

Микрокерметы. В электронике обычные керметы в связи с относительной грубой структурой частиц не натли применения, несмотря на их свойства, эффективные для изготовления, например, непроволочных резисторов. С помощью эпитаксиальной технологии, т. е. осаждением паров проводящих и диэлектрических материалов, образуется микрокерметная пленка [4] с устойчивыми полупроводниковыми свойствами.  [c.210]

То же самое происходит и в ванне индукционных плавильных печей. Что касается внешней теплоотдачи к обрабатываемому материалу, то в теплогенераторах ее нет. Теплогенераторы можно разделить на две группы простые теплогенераторы (топки резисторы электрических печей сопротивления и т. д.) и печи-теплогенераторы (конвертеры, индукционные электропечи и т. д.), отличающиеся тем, что в них теплогенерация сочетается с тем или иным технологическим процессом.  [c.8]

Кроме того, материалы должны иметь определенные значения коэффициентов теплопроводности и электрической проводимости — высокие значения для проводников, низкие или близкие к нулю значения для изоляционных материлов и строго заданные значения для резисторов, полупроводников и транзисторов коэффициент теплового расширения, который, исключая некоторые специальные случаи, должен быть по возможности низким хорошие фрикционные свойства для материалов, которые будут работать на износ или будут использованы для таких конструкций и частей, как оси, подшипники, шпонки и ползуны.  [c.7]

По области применения резистганнв материалы раэделяют на три основные группы. Первая группа — материалы для резисторов (медные, мед-но-нит елевые, никелевые, иикель-хро-чловие пленочные, проволочные, углеродистые) вторая групна — материалы для термоэлектродов термопар -и удлиняющих проводов (сплавы на ос- нове Ni, Си—Ni, Pt, Pt—Rh, W—Re неметаллические порошковые материалы) третья группа — материалы для нагревателей (сплавы на основе N4— Q, Fe—Сг—А1, порошковые керамические материалы).  [c.526]

Непроволочные резистивные материалы разделяют на пленочные металлические, пленочные на основе оксидов, силицидов, карбидов н неметаллические — углеродистые, Пленач1ше резистивные материалы используют в микроэлектронике, в микросхемах, интегральных схемах и других устройствах. Непроволочные резисторы широко применяют в автоматике, измерительной и вычислительной технике, в раз личннх областях электротехники. Свойства некоторых пленочных и углеродистых резистивных материалов приведены в табл. 21 и 22.  [c.527]

Карбид титана, являющийся перспективным материалом для высокотемпературной электроники, нашел применение в качестве проводящей фазы в керметных резистивных пленках для интегральных схем [270, 271]. Пленки, содержащие АЬОз и Ti в соотношении 1 1 по массе, осаждают ионно-плазменным распылением на нагретые до 600 °С поли-коревые подложки. Пленки Ti -AljOa, толщина которых составляет 20—300 нм, имеют электронографически аморфную структуру, сохраняющуюся до 1000 °С. Эти пленки значительно превосходят по стабильности структуры пленки традиционных резисторов Ti-АЬОз, в которых при 1000 °С наблюдается увеличение размера зерен до 50 нм и изменение фазового состава.  [c.204]

Скрайбирование, подгонка пленочных резисторов, отжиг полупроводниковых материалов ЭМ-210 Гибрид-9 Гибрид-16 (ЛТИ-501) ЛТИ-502 АИГ Nd АИГ Nd Моноимпульс-ная генерация при непрерывной накачке 10- 8-30 (54-10) 10 2-10 (54-50) Ю  [c.115]


Смотреть страницы где упоминается термин Резисторы Материалы : [c.54]    [c.70]    [c.225]    [c.274]    [c.197]    [c.139]    [c.220]    [c.414]    [c.526]    [c.171]    [c.174]    [c.185]   
Справочник металлиста. Т.1 (1976) -- [ c.131 ]

Справочник металлиста Том 1 Изд.2 (1965) -- [ c.220 , c.221 ]

Справочник металлиста Том5 Изд3 (1978) -- [ c.131 ]

Справочник металлиста Том 1 Изд.3 (1976) -- [ c.131 ]



ПОИСК



Материалы активных резисторов

Материалы для тонкопленочных резисторов

Резисторы



© 2025 Mash-xxl.info Реклама на сайте