Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термоэлектроды

Еав(Т(г Т2) зависит только от Го и Г2, если термоэлектрод однороден в области температурного градиента. В той области термоэлектрода, где имеется неоднородность, возникает небольшая добавочная термо-э.д.с. Поскольку термо-э.д.с. зависит от температуры почти линейно, неоднородность проявляется в большей мере в районе максимума температурного градиента. Это означает, что термо-э.д.с. неоднородной термопары становится функцией ее размещения, а не только разности температур горячего и холодного спаев.  [c.270]


Образец, подготовленный таким образом, закрепляется в специальном держателе, через ручку которого выводятся термоэлектрод-  [c.151]

Термоэлектрический термометр основан на температурной зависимости контактных термо-ЭДС в цепи из двух разнородных термоэлектродов [см (7.11)1. При этом происходит преобразование неэлектрической величины — температуры в электрический сигнал — ЭДС. Эти термометры в литературе часто называют-просто термопарами.  [c.174]

Согласно закону Вольта в замкнутой цепи из нескольких разнородных термоэлектродов с одинаковой температурой во всех переходных спаях термоток, не возникает. В соответствии с этим из рассмотрения цепей из двух А, В) и из трех (Л, В, С) термоэлектродов можно получить  [c.174]

Идея объединения функций двух обязательных элементов оригинально использована в устройстве для измерения локальных тепловых потоков высокой интенсивности. Конструктивная схема отдельного чувствительного элемента устройства показана на рис. 14.4. Промежуточным термоэлектродом каждого такого элемента служит константановая шайба 2 диаметром 5 и толщиной 0,9 мм. Медный диск 1 (общее основание устройства, на тепловоспринимающей поверхности которого согласно показанной на рисунке схеме монтируется необходимое число чувствительных элементов) и медное покрытие 3 выполняют роль крайних термоэлектродов. Толщину гальванического покрытия 3 выбирают достаточно малой, чтобы свести к минимуму в нем радиальные пере-течки тепла. Оказалось, что влиянием этих перетечек тепла на точность показаний ДТП можно пренебречь, если толщину покрытия выбрать меньше 0,1 мм. Термоэлектрод 5 размещается внутри кварцевой трубки 4.  [c.278]

В качестве термопарных проводов могут быть использованы провода из нихрома и константана диаметром 0,2 мм с изоляцией из термостойкой эмали. Для таких электродов размеры канавки, в которую их укладывают, обычно составляют 0,4X0,4 мм. Желательно применение проводов как можно меньшего диаметра, так как это приведет к уменьшению ошибки измерения. Зачищенные концы термоэлектродов длиной 0,1 мм приваривают точечной  [c.280]

Поскольку большинство величин в правой части (14.20) зависит от температуры, чувствительность также должна быть функцией температуры. Это нежелательный факт, и его стараются исключить, например соответствующим выбором материалов. Так, для уже упомянутого датчика наиболее перспективна пара медь — константан (промежуточный термоэлектрод — константан, крайние электроды — медь), так как у нее изменения теплофизических характеристик от температуры оказались такими, что получается почти полная взаимная компенсация влияния изменения теплопроводности и термоэлектрических свойств.  [c.286]


На рис. 16.5, а показана однопроводная схема для непосредственного измерения термо-ЭДС восьми термопар, размещенных на вращающемся объекте. Термоэлектрод а у всех термопар общий и подключен к одному из колец токосъемника, а каждый из электродов б подключен к отдельному кольцу. Свободный спай термо-  [c.323]

На рис. 16.5, б показана потенциометрическая схема подключения вращающейся термопары с промежуточным электродом. Термоэлектроды, образующие рабочий спай термопары 1, которая крепится к месту замера температуры на вращающейся детали, на противоположных концах образуют термопары 2 и 3, дополнительные электроды которых выполнены из тех же материалов, что и контактные кольца. Благодаря этому исключается возникновение термо-ЭДС в месте припайки термоэлектродов к контактным кольцам.  [c.324]

Соотношение сечений основного (константанового) и промежуточного (медного) термоэлектродов в описанных га-летных датчиках равно 2 0,1 =20, что близко к оптимальному соотношению, равному 21,3, из условий получения максимальной чувствительности датчика [7].  [c.59]

Варьирование эффективной теплопроводности первичного преобразователя. Эффективная теплопроводность одиночного датчика теплового потока (рис. 3.8,а) целиком определяется теплопроводностью промежуточного термоэлектрода 1 и может варьироваться лишь в узких пределах, определяемых возможными материалами для этого термо-электрода (константана, копеля, платинородия), а также долей сечения отверстий 3 для перфорации. Изготовление  [c.70]

Чтобы не усложнять выражения (3.8), следует пренебречь переносом теплоты через поперечные для этого переноса участки термоэлектрода 1 как несущественным.  [c.71]

Использование выражения (3.10) приводит к появлению еще двух параметров удельных электрических сопротивлений основного и дополнительного термоэлектродов pi и р .  [c.72]

Если одиночный датчик имеет электрический контакт со стенкой (приварен или припаян), то коммутацию нескольких датчиков можно выполнять только по двухпроводной схеме (рис. 5.16,а). При однопроводной схеме коммутации датчиков 1—3 (рис. 5.16,6) собирают, например, положительные термоэлектроды 4—6 в один токосъемный провод 7, а переключатель 8 устанавливаются лишь на отрицательных термоэлектродах 9—11. При этом незначительные отличия температуры стенки в местах заделки датчиков приведут к весьма большим ложным их сигналам. Если даже измерения производить датчиком 2, который электрически изолирован от стенки, к его рабочему сигналу добавится падение э. д. с. на участке 5—6. Такая ошибка является характерной при измере-йиях температуры с помощью обычных термопар, в особенности когда не учитывают тот факт, что многие продукты электропро-водны.  [c.119]

Схема термоэлектрического термометра (термопары) показана на рис. 3.1. Термоэлектроды м (например, медная проволока) и к (например, константановая проволока) сое-  [c.112]

Особенностью экспериментального исследования теплообмена является необходимость измерения температуры, резко меняющейся в окрестности контролируемой точки и во времени. Поэтому выполнение основного требования техники эксперимента, согласно которому установка измерительного преобразователя не должна искажать исследуемый процесс, связано со значительными трудностями. Следует исключить погрешности, связанные с притоком или оттоком теплоты по термоэлектродам, с инерционностью датчика, с неоднородностью термоэлектродов по длине и т. п.  [c.114]

При измерении температур до 1300°С для изоляции термоэлектродов применяют одноканальные и двухканальные, фарфоровые, а при измерении более высоких температур керамические  [c.26]

Включение измерительных приборов в цепь термопары. Для включения в цепь термопары измерительного прибора 4 (рис. 3.1) необходимо либо разорвать один из термоэлектродов (а), либо разорвать холодный спай термопары (б). На рисунке / — горячий спай, 2 — холодный спай термопары.  [c.26]

ГОСТ 6072-51. Проволока из сплавов НК и СА для термоэлектродов термопары бея-поправки на температуру свободных концов.,  [c.302]

ГОСТ Ь-1720-42. Проволока для термоэлектродов, термопар из сплавов хромель, алюмель и копель.  [c.302]

Термопары из сплавов благородных металлов являются более устойчивыми. Известна термопара серебро—константан, имеющая такую же градуировку, как медь—константан, однако она более устойчива. Термопары из благородных металлов могут употребляться в некоторых агрессивных средах, например в расплавленных солях, без защитного колпачка. Это имеет большие преимущества и повышает точность измерения. Положительными термоэлектродами в этих термопарах могут служить Pt, сплав 90% Pt + 10% Rh. Отрицательными термоэлектродами служат сплав 60% Аи + 30% Pd- -10% Pt и сплав 60% Аи-f + 40% Pd. Известна термопара (90% Pt + 10% Rh) — (60% Ли+ 30% Pd + -f 10% Pt) под маркой ТБ, ее градуировка приведена в табл. 29. Эта термопара  [c.434]


Работа термоэлектрических термометров основана на термоэлектрическом эффекте, возникающем в термопаре. Термопарой или термоэлементом называют цепь из двух разнородных электрических проводников (термоэлектродов), концы которых соединены (сваркой, пайкой и т. п.). При наличии разности температур в местах  [c.125]

Значение ЭДС зависит только от температуры спаев и материала термоэлектродов, но не зависит от диаметра и длины проводников и распределения температуры по их длине.  [c.125]

Экспериментальные методы оценки и измерения температуры. Метод естественной термопары основан на том, что контактирующие тела используются в качестве термоэлектродов, а их контактная связь — в качестве одного из спаев цепи термопары. По термо-ЭДС, возникающей в цепи при контакте двух разнородных металлов, оценивают температуру на поверхности контакта.  [c.111]

В термоэлектрических преобразователях осуществляется преобразование температуры в термоэлектродвижущую силу (термо-ЭДС) их действие основано на термоэлектрических явлениях, открытых Зеебеком (1821 г.). Термо-ЭДС в цепи, состоящей из двух разнородных проводников — термоэлектродов, зависит от температуры мест их соединения — спаев (/ и о) и от рода термоэлектродов (А и В) зависимость становится однозначной при постоянной температуре одного из спаев обычно температура холодного спая поддерживается постоянной и равной нулю, т. е. /о = сопз1 = 0 °С тогда уравнение преобразования принимает вид  [c.141]

Рассмотрим термоприемник (авторы предложения Е. У. Репик и Л. Г. Шихов), показанный на рис. 9.5. Камера торможения образуется цилиндрическим насадком 1, надетым на державку термоприемника 2 из изоляционного материала, и имеет несколько вентиляционных отверстий. Чувствительный элемент 3, помещенный в центре камеры, представляет собой тонкостенный цилиндр из высокотеплопроводного металла с припаянными к нему термоэлектродами термопары 5 такое устройство способствует малой тепловой инерции, выравниванию температуры по нему и увеличению поверхности теплообмена. Концентричные экраны 4 уменьшают радиационный тепловой поток к корпусу термоприемника. Рассмотренная конструкция камеры торможения допускает отклонение направления газового Рис. 9.5. Термоприемник для изме- потока ОТ ее ОСИ на 20° без измерения температуры высокоскорост- нения показателей термоприем-.яого газового потока (/ т = 0,96-  [c.178]

Для примера приведем значения е для некоторых термоприемников. Термометры сопротивления из оголенной платиновой проволоки диаметром 0,1 и 0,3 мм имеют е соответственно 0,03 и ,09 с, применение остеклованной платиновой проволоки с наружным диаметром 0,5 мм увеличивает е до 0,14 с [1]. Термометр сопротивления из вольфрамовой проволоки диаметром 50 мкм и длиной 11 мм имеет расчетное значение е, равное 7,2-10 с (при расчетах принято а = 4,8-10 Вт/(м2-К). Медно-константановая бескорольковая термопара, изготовленная из проволоки диаметром ,5 -мм, и аналогичная термопара с диаметром спая 1 мм имеют е соответственно 1,12 и 2,5 с [коэффициенты теплоотдачи термоэлектродов и спая с воздухом приняты при расчетах соответственно равными 400 и 260 Вт/(м2-К)], т. е. наличие королька в данных условиях увеличивает инерционность термопары более чем в 2 раза. Для сравнения отметим, что для ртутного термометра с наружным диаметром резервуара 7 мм е равен 14 с.  [c.181]

Оригинально реализован метод вспомогательной стенки в ДТП, разработанных в Институте технической теплофизики АН УССР. Датчик представляет собой своеобразную сплющенную дифференциальную термопару, промежуточный термоэлектрод которой служит вспомогательной стенкой (рис. 14.3). При передаче через датчик измеряемого теплового потока с плотностью q на гранях промежуточного термоэлектрода возникает разность температуры, пропорциональная тепловому потоку. Эта разность температуры вызывает соответствующую термо-ЭДС е, которая токосъемными проводами 4 подается на измерительный прибор. По значению е  [c.277]

Обычно размеры константаново-го диска невелики (диаметр отверстия в блоке часто составляет 1 — 2 мм) и выполнить их строго идентичными между собой трудно, не всегда удается обеспечить симметрию температурного поля фольги. По этим причинам, а также из-за утечек тепла по центральному медному проводнику, его теплоемкости, эксцентриситета и теплоотдачи с внутренней стороны кон-стантанового диска отклонение действительных характеристик датчиков от расчетных может достигать 20—30 % и больше, в связи с чем каждый датчик обычно нуждается в индивидуальной тарировке. Наибольшую погрешность вызывает эксцентриситет центрального термоэлектрода, влияние которого при малых размерах чувствительного элемента еще больше возрастает.  [c.280]

Первое состояло в искусственной организации капиллярных пор в направлении потока влаги. Ленточка термоэлектродов дополнительно обвивается слоем тонкого стекловолокна, далее из нее изготовляется спиральный или слоистый базовый элемент. Основная сложность в осуществлении этого предложения состояла в подборе степени полимеризации эпоксидного компаунда, которым смазывалась ленточка, чтобы придать элементу достаточную механическую прочность и вместь с тем сохранить большинство капилляров между нитями стекловолокна свободными для прохождения влаги. В результате при смачивании одной из граней массообменной секции тепломассомера противоположная грань секции за счет капиллярных сил также полностью смачивается.  [c.60]

Наконец, искажение 3-го рода является специфическим для новых решетчатых базовых элементов. Технология их изготовления позволяет сводить почти до нуля толщину охранного слоя, когда требуется повысить X либо снизить инерционность тепломассомера. При этом каждый термоэлектрод может стягивать линии теплового потока, общий сигнал элемента возрастает. Количественные характеристики этой погрешности были определены при градуировке базовых элементов с лучистым и кондуктивным подводом энергии (см. гл. 5). Источник этого искажения полностью устраняется при использовании температуровыравнивающих пластин или фольги.  [c.70]


Теплопроводность батарейных датчиков определяется теплопроводностью обоих термоэлектродов >1,1 и и заполнителя Ха, а также соотношением сечений этих электродов. Рассмотрим возможность изменения Хд при изготовлении и эксплуатации наиболее применимых батарейных датчиков, коммутация которых осуществляется гальваническим покрытием отдельных отрезков термоэлектродной проволоки материалом с контрастными потермо-э. д. с. свойствам (спиральные, слоистые, решетчатые датчики) [8, 44]. На рис. 3,8,6 приведена схема такого датчика. Тепловой поток с плотностью д последовательно проходит три слоя. В первом слое толщиной х не вырабатывается сигнал — он служит для механической и электрической защиты термоэлектродов и выполняется из материала, заполняющего пространство между термоэлектродами во втором слое толщиной к — 2х. Основным элементом второго слоя является термоэлектрод 1 сечением f . Каждая вторая ветвь термоэлектрода покрыта слоем другого термоэлектродного материала 2 сечением имеет термоэлектрические свойства, близкие к материалу покрытия [7]. Места переходов от одиночного к биметаллическому электроду находятся на гранях среднего слоя и играют роль горячих либо холодных спаев дифференциальной термобатареи, сигнал которой и определяет плотность теплового потока д. Пространство между электродами занимает заполнитель 3 сечением /з. Если датчик диффузионно проницаем, то в /з входит и сечение капилляров. Наконец, теплота проходит снова через слой заполнителя толщиной х.  [c.71]

Для выработки практических рекомендаций по выбору Хд, наиболее близкого к теплопроводности продукта или стенки аппарата, произведем упрощение уравнения (3.9). Примем значения некоторых параметров тепломассомеров согласно унифицированной технологии (см. п. 3.1). В качестве основного термоэлектрода в них используется констан-тановый провод диаметром 100 мкм (/ = 7,85 10 м Я1 == 25 Вт/ (м - К), в качестве покрытия — медь — = 380). Величину /2 получим из (3.10) для случая заполнения датчика эпоксидной смолой с з = 0,3 (pi = 0,48 X X 10 Ом м Ра = 0,018 10 ), последовательными приближениями в связи с наличием неизвестной /3. В соответствии с рекомендациями [7, 8], увеличим полученное значение /аплш на 50 %. Окончательно получим = 1,1 X X 10" м , что соответствует толщине покрытия 3,5 мкм.  [c.72]

Каждый элемент или готовое устройство градуируется в диапазоне тепловых потоков, которые ожидают получить в продукте или аппарате (при пяти-шести установивпшхся режимах работы излучателя). Для проверки корректности выполнения элемента (отсутствие воздушных пузырей, перекосов ленточки термоэлектродов) градуировку производят, изменяя поверхности элемента, через которые он экспонируется лучистым потоком. В опытах после градуировки с одной стороны датчик, закрепленный на холодильнике с помощью замазки Рамзая, снимают, замазку удаляют, поверхность обезжиривают ацетоном и покрывают чернью того же состава, что и в основных опытах. Градуировку повторяют, и данные обеих градуировок наносят на график Е = I д) (см. рис. 4.16). Как правило, опытные точки градуировки не выходят за пределы прямой линии, обобщающей эти точки, более чем на 3 % эта цифра и считается максимальной погрешностью измерения для серийного элемента.  [c.104]

Поскольку в этой установке тепломеры располагались на вращающейся детали (скорость вращения до 500 об/мин), показания датчиков дублировались. Для этого возле каждого датчика в диск зачеканено по две термопары на обеих поверхностях диска, что позволяло измерять температурный перепад на гранях диска, пропорциональный локальному тепловому потоку. Чтобы повысить точность измерения, на одну пару колец токосъемника термопары были включены дифференциально по однопроводной схеме, с использованием в качестве промежуточного. термоэлектрода материала стенки диска. Градуировка этого устройства показала, что в достаточно широком диапазоне сохраняется линейная связь между тепловым потоком и термо-э. д. с.  [c.109]

Влияние утечек теплоты по термоэлектродам базовых элементов и термопар сведено к нулю за счет их расположения по изотермическим поверхностям на длине / >100йГ и применения проводников диаметром 0,1...0,2 мм.  [c.125]

При высоких скоростях скольжения для измерения температуры поверхности трения можно применять "разомкнутую" термопару, не имеющую заранее подготовленного спая. Концы проволоки располагаются на уровне поверхности трения, а горячий спай образуется в процессе трения за счет пластического течения тонкого слоя металла образца и микронаволакивания металла. Авторами [111] разработана схема прибора с "разомкнутой" термопарой хромель-копель. Торцы термоэлектродов располагаются на уровне поверхности трения на расстоянии 0,5 мм друг от друга. Диаметр рабочего конца термопары 2 мм. В качестве изоляции исполЕ.зовали специальный цемент с асбестовым волокном. Термопару устанавливали в образец на резьбе, и рабочий торец сошлифовывали до уровня поверхности трения образца.  [c.213]

Следует заметить, что в некоторых работах ВТИ применялась дифференциальная термопара платина — золото, обладающая большой термоэлектрической однородностью и стабильностью, меньшим сопротивлением и развивающая большую термо-ЭДС, чем термопара илатинородий — платина. Такая термопара позволяет повысить точность измерения. Термопара платина — золото использовалась как семи- или шастиспайная в зависимости от того, какие термоэлектроды использовались в качестве выводных. Опыты показали, что при тща-  [c.103]

НК 0,5-5,0 Для термоэлектродов термопары без поправки на тел1пературу свободных концов 45-62 25 0,345 0,02 —  [c.289]

Чистая платина служит эталонным термоэлектродом, с которым сравни вают металлы и сплавы, употребляемые для термопар. В табл. 8 приведены термоэлектродвижушие силы благородных металлов в паре с чистой платиной при температуре холодного спая О С. Термоэлектродвижущая сила чистых металлов, особенно платины, весьма устойчива до определенных пределов температур, поэтому чистая платина и ее сплавы применяются в качестве термоэлектродов для точных высокотемпературных термопар. Термоэлектродвижущая сила чистых металлов сильно изменяется в присутствии ничтожных количеств примесей и может служить критерием чистоты металлов.  [c.399]

Термопары с высокой термоэлектродвижущей силой. Для особо точных измерений сравнительно невысоких температур применяются термопары с высокой термоэлектродвижущей силой. Известны для этой цели термопары, в которых положительными термоэлектродами служат медь, железо, хромель и отрицательными — копель, константан, алюмель. Наиболее высокой термоэлектродвижущей силой обладает термопара хромель—копель, затем медь—копель, железо — копель, медь — константан и хромель — алюмель. Длительная устойчивость термоэлектрических характеристик термопар с медным электродом сохраняется при температуре не выше 300—400° С и с Копелевым электродом не выше 500— 600 С. Хромель-алюмелевая термопара может работать длительно при 900° С.  [c.434]

Если температура одного из концов термопары постоянная (напрнмер, он погружен в воду с тающим льдом или термостабилизирован другим способом), то ЭДС зависит только от температуры ее рабочего конца. Наиболее известные материалы термоэлектродов — платина, железо, молибден, вольфрам, медь, магнаннн, платино-родий, хромель, копель, алюмель, константа н. Конструктивное оформление термопар разнообразно и должно соответствовать условиям их эксплуатации. Часто рабочие концы помещают в защитные оболочки из фарфора или другого материала.  [c.125]

В установках обоих типов термопара (см. рис. 19 и 20), с помощью которой измеряется и регулируется температура образца, проходит через отверстие в столике и касается основания образца. Термоэлектроды изолированы друг от друга керамическими трубками из алунда, окиси магния или карбонитрида бора, свободные концы термостатирова-ны. Параллельно измеряли температуру образца, индентора, стола и нагревателя с помощью оптического пирометра и цветового фотоэлектронного пирометра.  [c.50]



Смотреть страницы где упоминается термин Термоэлектроды : [c.270]    [c.277]    [c.278]    [c.71]    [c.292]    [c.430]    [c.125]    [c.112]   
Техническая термодинамика Изд.3 (1979) -- [ c.402 , c.415 ]



ПОИСК



Выбор термоэлектродов для термопар

Нестабильность характеристик термоэлектродов

Однородность термоэлектродов

Резистивные для термоэлектродов термопар

Соединительные и термоэлектродиые (компенсационные) провода

Термоэлектродиые материалы

Термоэлектродиые провода

Физико-технические характеристики термоэлектродов

Электрическая изоляция термоэлектродов



© 2025 Mash-xxl.info Реклама на сайте