Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращение твердого тела вокруг оси переменное

Из различных переменных вращений тела в задачах наиболее часто встречается равнопеременное вращение. Равнопеременным вращением называют такое вращение твердого тела вокруг оси, -при котором угловое ускорение остается постоянным  [c.169]

Во время первого, третьего и пятого периодов ротор вращается по хорошо известным законам вращения твердого тела вокруг оси под действием постоянных или переменных моментов во время второго и четвертого периодов вращение ротора происходит во время рабочих ходов штока и называется срабатыванием, а соответствующее время — временем срабатывания.  [c.6]


I—момент инерции твердого тела относительно мгновенной оси, ш — величина мгновенной угловой скорости (так как мгновенная ось меняет свое положение при вращении твердого тела вокруг неподвижной точки, то / является величиной переменной).  [c.285]

В работе Ковалевской о вращении тяжелого твердого тела вокруг неподвижной точки необходимо отметить следующие существенно новые для механики и математики особенности. Ею открыт новый случай вращения твердого тела вокруг неподвижной оси, для которого она нашла общий интеграл. С. В. Ковалевская впервые привлекла к исследованию подобных задач прекрасно разработанный аппарат теории функций комплексного переменного. Наконец, ее работа поставила некоторые новые общие математические проблемы.  [c.246]

Область Д в координатах Ii, I2 есть снова Д = h, h h О, /i /2 . В канонических переменных действие-угол I, (fi функция имеет вид S h I2 h Ф1 Ф2 Фз), то есть зависит только от h, h - Используя формулу (1.1), легко получить, что линии уровня функции 23 (h, h)/ в координатах действие суть прямые линии, проходящие через начало координат. Прямые II = О, /i = I2 (лежащие в Д) отвечают вращениям твердого тела вокруг меньшей и большей осей инерции. Вращениям вокруг средней оси инерции соответствуют точки из Д, расположенные на двух прямых 23 Ii, I2) = / .  [c.40]

Рассмотрим вращение твердого тела вокруг неподвижной точки в потенциальном поле сил, инвариантном относительно поворотов вокруг некоторой прямой Г, проходящей через точку подвеса. Обозначим, как обычно, через р, ц, г проекции вектора угловой скорости на главные оси эллипсоида инерции тела, а через 71, 72, 73 — косинусы углов между прямой Г и главными осями инерции. Потенциал поля сил "V зависит только от переменных 71, 72, 73. Предположим, что У — аналитическая функция в некоторой окрестности нуля 7 = 72 = = -уз = О, содержащей сферу Пуассона  [c.68]

Существуют ли такие неустановившиеся движения, для которых линии тока все же совпадают с траекториями Возьмем, например, прямолинейное движение твердого тела с переменной скоростью. В этом случае как линии тока, так и траектории будут прямыми, а само движение будет, конечно, неустановившимся. Аналогично линии тока и траектории будут совпадать в случае вращения твердого тела вокруг неподвижной оси с переменной угловой скоростью. В общем случае линии тока и траектории будут совпадать друг с другом при таких неустановившихся движениях, в которых скорости меняются в данной точке пространства с течением времени только по величине, но не по направлению.  [c.42]


Из других работ по механике тел переменной массы Мещерского важное практическое значение имеет его исследование вращения твердого тела переменной массы вокруг неподвижной оси дополняющее ранние работы о поступательном движении тел переменной массы.  [c.232]

Проведем через нее три подвижные оси, движущиеся поступательно. Тогда движение твердого тела может быть разложено на движение по отношению к подвижным осям Охуг и переносное, которое будет поступательным и определяется движением точки О тела. Сложное центробежное ускорение равно нулю в случае поступательного переносного движения поэтому ускорение точки М тела равно геометрической сумме относительного ускорения, равного ускорению при движении тела вокруг неподвижной точки, и переносного ускорения, представляющего собой ускорение точки О. Пусть w—ускорение точки О, и р, q, /- — проекции на оси переменного вращения w тела проведем ось z параллельно оси вращения в рассматриваемом ее положении и в сторону вектора (о тогда проекции абсолютного ускорения точки /И (с координатами х, у, г) будут  [c.111]

Пример 11. Рассмотрим вращение тяжелого твердого тела около неподвижной точки. Расстояние от точки подвеса до центра масс тела обозначим е и будем считать малой величиной. При е = 0 получаем задачу Эйлера—Пуансо (гл. 4). Переменные действие — угол /ь /г, в, фи фг, А для этой задачи описаны в [12] (см. также гл. 3, п. 2.3). Напомним, что /г — модуль вектора кинетического момента тела, а 0 — его вертикальная проекция, О — угол поворота вектора кинетического момента вокруг вертикали, переменные и ф1. фг при заданном /г определяют положение тела в системе осей, жестко связанной с вектором кинетического момента и вертикалью (рис. 20).  [c.183]

Но полученная формула для кинетической энергии вращательного движения твердого тела (18.2) может быть использована для вычисления только в случае, когда вектор угловой скорости не изменяет своего направления при движении тела (например, при вращении тела вокруг неподвижной оси). Если это условие не выполняется, момент инерции Is становится переменной величиной и формула практически оказывается непригодной для использования. В этом случае выражаем момент инерции /j относительно мгновенной оси вращения через главные моменты инерции по формуле (16.7) и замечаем, что wot = со -, соР = соу, wv = есть проекции угловой скорости на подвижные оси. Тогда для кинетической энергии вращательного движения получается следующее выражение  [c.163]

Постановка задачи. Рассматривается нестационарное течение вязкой несжимаемой жидкости между соосными, бесконечно длинными цилиндрами, которые совершают равноускоренное вращение вокруг своей оси как твердое тело. В начальный момент времени ( = 0) цилиндры и жидкость, расположенная между ними, покоятся. Рассмотрение движения жидкости проводится в цилиндрической системе координат (г, ф, 2), связанной с вращающимися цилиндрами. Из-за действия силы углового ускорения при I > О жидкость приходит в нестационарное одномерное движение. Здесь г -координата вдоль оси цилиндров, ф - угловая переменная, г - координата, нормальная к поверхности цилиндров. Вектор скорости V = (и, и, н ) имеет компоненты и - вдоль нормали к поверхности, V - вдоль углового направления vlw - вдоль оси.  [c.52]

В некоторых задачах принцип Даламбера оказывается даже более гибким, чем более развитый принцип наименьшего действия. Дифференциальные уравнения движения, определяющие ускорения движущейся системы, являются уравнениями второго порядка. Ускорение qi — это вторые производные координат qi или первые производные скоростей qi. Может, однако, оказаться более удобным — и такая ситуация встречается, в частности, в динамике твердого тела — характеризовать движение при помощи некоторых скоростей, не являющихся производными действительных координат. Такие величины называют кинематическими переменными . Хорошим примером является вращение волчка вокруг оси симметрии. Его можно охарактеризовать угловой скоростью вращения со = defi it, где d p — просто бесконечно малый угол поворота, а не дифференциал от какого-либо угла ф, так как такой угол ф существует лишь в случае, если ось симметрии закреплена. Тем не менее и при незакрепленной оси удобно использовать d(f/dt как величину, характеризующую движение волчка. В принципе наименьшего действия нельзя использовать кинематические переменные, а в принципе Даламбера можно.  [c.117]


Мы уже многократно рассматривали как примеры для объяснения общих понятий и законов механики те движения, причиной которых считают силу тяжести, рассмотрим эти движения подробнее и вначале разъясним, как измеряется сила тяжести. Для этого нам послужит наблюдение колебаний тяжелого тела, которое способно вращаться вокруг горизонтальной оси. Такое приспособление называют маятником, а именно сложным маятником — в противоположность простому маятнику, о котором мы уже говорили. Допустим, что сила тяжести — постоянная ускоряющая сила. Рассмотрим маятник как твердое тело и пренебрежем влиянием воздуха, движением Земли и трением оси вращения тогда мы сможем очень легко вычислить движение такого маятника. Положение последнего в некоторый момент определено одной переменной выберем в качестве ее угол образованный плоскостью, проходящей через ось вращения и центр тяжести маятника, и вертикальной плоскостью, проходящей через ось вращения. Согласно 5 четвертой лекции, имеем теорему площадей относительно плоскости, перпендикулярной к оси вращения, так как связи точек маятника допускают вращение вокруг нее эта теорема дает дифференциальное уравнение для такого угла. Обозначим величину силы тяжести — g, массу маятника—т, расстояние от его центра тяжести до оси вращения—s, момент инерции маятника относительно этой оси — к, таким образом получим дифференциа ное уравнение  [c.69]


Смотреть страницы где упоминается термин Вращение твердого тела вокруг оси переменное : [c.333]    [c.159]    [c.98]   
Курс теоретической механики 1981 (1981) -- [ c.58 ]



ПОИСК



Вращение переменное

Вращение твердого тела

Вращение твердого тела вокруг оси

Вращение твердого тела переменное

Вращение твердых тел

Вращение тела вокруг оси

Тело вращения

Уравнение вращения твердого тела вокруг неподвижной точки переменной массы



© 2025 Mash-xxl.info Реклама на сайте