Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы Точность обработки

Выведены формулы (6), (7) для расчета сил резания при чистовом фрезеровании резцом с широким лезвием из среднеуглеродистой стали с пределом прочности = 50-т--ьбО кг/мм . Эти формулы дают возможность рассчитать мощность, необходимую для резания, жесткость технологической системы, точность обработки и определить усилия резания.  [c.63]

Ряд зарубежных фирм выпускает станки для контурной резки, оснаш,енные фотоэлектрической копировальной системой. Стол на этих станках перемещается по двум координатам с помощью гидравлической системы точность обработки 0,025 мм, толщина обрабатываемой заготовки до 45 мм.  [c.172]


Программными сигналами задаются так называемые опорные величины, характеризующие относительное расположение фрезы и заготовки через определенные интервалы поворота заготовки, например через 0,125° 0,25° 0,5 или через Г н т. д. Чем выше требуемая точность обработки, тем меньше должны быть интервалы задания опорных точек и тем больше должно быть нх ч сло. В системе привода вращения заготовки имеется кулачковый вал 4. На нем имеется несколько кулачков, управляющих включением однооборотной муфты и считыванием программных сигналов. Считанные сигналы поступают в блок управления 6.  [c.589]

Режущий инструмент изнашивается по передней и задней поверхностям. Износ по задней поверхности особенно влияет на точность обработки. Размеры деталей изменяются также по причине затупления режущей кромки инструмента, что вызывает увеличение радиальной составляющей силы резания и, значит, увеличение деформаций всей системы СПИД.  [c.49]

Из сказанного видно, что жесткость упругой системы СПИД имеет большое значение для точности обработки деталей на металлорежущих станках.  [c.56]

Жесткость упругой системы влияет в основном на точность обработки и на возникновение вибраций.  [c.56]

На точность обработки на многорезцовых полуавтоматах влияют, помимо общих, ряд дополнительных факторов, свойственных многорезцовому обтачиванию неточность размеров, определяющих взаимное расположение резцов по диаметру и длине ступеней обтачиваемого вала (или другой детали), неодинаковый износ резцов, меняющаяся величина отжатия в технологической упругой системе станок — приспособление — инструмент — деталь, что происходит по причине последовательного вступления в работу резцов, закрепленных в резцедержателях.  [c.186]

Практика показала, что ГПС должны быть связаны с безлюдной технологией, а это требует решения целого комплекса сложнейших проблем. В числе этих проблем — резкое повышение надежности технологического оборудования и системы управления более детальная проработка технологического процесса на основе имитационного или ситуационного моделирования, учитывающая возможные отказы в процессе изготовления изделия обеспечение автоматического распознавания поступающих на станок заготовок и вызов соответствующих управляющих программ автоматическая настройка станков на новый вид обработки, автоматическая коррекция инструмента и его замена при затуплении автоматическое обнаружение поломок инструмента автоматическое поддержание точности обработки за счет оптимизации режимов резания, в том числе и с привлечением адаптивного управления и др.  [c.144]

В 1950—1970-х годах проводились многочисленные исследования по системам адаптивного управления станками, групповой обработке, определению влияния различных факторов на точность обработки и качество поверхности. В разработке этих проблем участвовали Б. С. Балакшин, С. П. Митрофанов, П. Е. Дьяченко, М. Е. Егоров, В. С. Корсаков и др.  [c.7]


При необходимости конструкция заготовок должна отвечать требованиям их обработки на станках с ЧПУ, внедрения роботов, обработки заготовки с применением быстросменных и групповых наладок, а также условиям обработки в гибких производственных системах (ГПС). В этом случае критериями технологичности изготовляемых деталей принимают назначение, тип зажима, точность обработки средств технологического оснащения, шероховатость обрабатываемых поверхностей и т. д. и форму организации производства.  [c.36]

Это достигается высокой точностью обработки поверхностей вала и подшипников, соблюдением строгой цилиндричности вала и подшипника, исключением перекосов и деформаций системы и тщательной очисткой масла. Малая шероховатость и правильная цилиндрическая форма поверхности не должны нарушаться при длительной эксплуатации следовательно, вал и подшипник должны быть максимально износостойкими.  [c.335]

На копир действуют лишь малые нагрузки и долговечность его повышается, а себестоимость обработки снижается, кроме того, при следящей системе устраняется влияние деформации звеньев, связывающих копир с ИО, что повышает точность обработки.  [c.469]

Таким образом, получена зависимость выходного параметра изделия X = Ац (точность обработки) от износа отдельных элементов системы. Для дальнейшего анализа более удобно привести эту зависимость к виду, когда А, является функцией одного аргумента — износа одного из сопряжений V. Для этого определяется соотношение скоростей изнашивания отдельных звеньев и выражается их износ через износ одного из звеньев.  [c.375]

К перечисленным могут быть добавлены ограничения по точности обработки (от режима резания зависит упругая деформация системы СПИД), по прочности механизма подачи (исходя из наличия в ней слабого звена), по прочности режущего инструмента и др.  [c.52]

При применении станков с системами автоматического (адаптивного) управления в основу оптимизации режимов резания положена комплексная задача обеспечения максимальной производительности при заданной точности обработки и шероховатости поверхностей. В обычных условиях при расчете режимов резания исходят из того, что заготовка имеет максимальный припуск, по нему определяется расчетная глубина резания, устанавливается и подача..  [c.53]

Если припуск неравномерен, а площадь обработки велика, зазор должен быть 1 мм и более, скорость обработки при этом составляет 0,1—0,2 мм/мин. При прошивании отверстий зазор можно уменьшить (0,1—0,3 мм), тогда скорость обработки может составить 0,5—2 мм/мин. По мере углубления электрода величина зазора постепенно выравнивается и форма электрода копируется на заготовке. Однако этот процесс длительный и чем больше величина и колебание зазора, тем больше его влияние на точность обработки. Чтобы поддерживать межэлектродный зазор в определенных пределах применяют различные регуляторы. Наиболее распространены следящие устройства, основанные на контактной системе регулирования. Электроды в них при выключенном питании периодически сближаются до контакта, затем разводятся до получения необходимого зазора, после чего включается источник питания. Все это сказывается на производительности процесса потери компенсируются повышением стабильности процесса.  [c.162]

Если учесть, что точность обработки в большой степени зависит от упругих деформаций системы СПИД, вызываемых, в частности, неравномерным припускам, системе адаптивного управления может быть задана величина допустимого усилия резания или предельное значение самой деформации.  [c.211]

Широкое применение в копировальных станках находят гидроприводы, обеспечивающие плавное регулирование скоростей подач в широких диапазонах. Однако точность обработки деталей на станках с гидроприводом и гидравлической системой управления ниже, нежели с электрическими системами непрерывного действия.  [c.308]

На завершающих стадиях проектирования (технический проект, разработка рабочей документации), когда основные проектные решения по выбранному варианту уже проработаны, т. е. определены технологический процесс, количество и тип оборудования, разработаны конструкции механизмов и пр., необходимо уточнение ожидаемых характеристик проектируемой системы, в том числе по производительности, с целью сравнения их с требуемыми (ожидаемая производительность и требуемая согласно производственной программе, ожидаемая точность обработки и допустимая, ожидаемые экономические показатели и нормативные). На данном этапе при расчетах ожидаемой производительности должны учитываться такие факторы, как проектные режимы работы, быстродействие механизмов и устройств и ожидаемый уровень их надежности, степень загрузки оборудования и пр. По результатам расчетов и сопоставления величин ожидаемой и требуемой производительности могут быть скорректированы проектные решения (режимы обработки, число параллельно работающих единиц оборудования, нормы обслуживания наладчиками, система эксплуатации инструментов и пр.). Расчеты производятся в условиях неполной и недостаточно достоверной исходной информации, особенно в части ожидаемой надежности работы, величины организационных простоев и пр.  [c.65]


Рассмотрим определение параметров системы ЧПУ из условия обеспечения заданной точности обработки контура, составленного из отрезков прямых. При отработке прямолинейного контура 1 (рис. 5.10) динамическая ошибка, равная величине отрезка нор-  [c.111]

Цели кратковременных исследований определение фактических эксплуатационных показателей по линии и по отдельным элементам (степень загрузки, баланс производительности, показатели надежности, точности обработки и технико-экономические) получение сведений, позволяющих улучшить эксплуатационные показатели изучаемой линии на основе рационализации системы эксплуатации и улучшения конструкции линий и комплектующего оборудования.  [c.279]

Наиболее широко применяемая схема базирования при выполнении черновых и получистовых операций и при вводе деталей в приспособление одним прямолинейным движением конвейера. Установка детали на две продольные планки существенно повышает жесткость системы СПИД, предотвращая упругие деформации и вибрации детали в тех случаях, когда силы резания направлены мимо трех точек теоретически правильного базирования. Из-за отклонений от плоскостности базы на детали (в пределах 0,05 — 0,1 мм) и планок (в пределах 0,02 — 0,03 мм) деталь при зажиме упруго деформируется, что снижает точность обработки, но в допустимых при черновой и получистовой обработке пределах  [c.85]

В отечественной и зарубежной станкостроительной литературе за систе.мами управления точностью обработки закрепилось название адаптивные системы .  [c.93]

В последние годы особенно возрос интерес к проблеме оптимизации технологических процессов, в том числе и процессов металлообработки. Сложность этих процессов, значительное количество характеризующих их параметров стали причиной появления различных направлений в решении данной проблемы. Целью создания системы управления точностью обработки является уменьшение отклонений от заданных размеров и формы обрабатываемой детали. Если при обработке данной заготовки удается предсказать ожидаемое отклонение размеров или формы, то непосредственной задачей системы является введение поправки во взаимное расположение инструмента и заготовки, равное по величине ожидаемому отклонению, но противоположное по знаку.  [c.93]

Однако построение на микропроцессорной основе систем, способных решать задачи оптимизации управления точностью обработки, требует решения целого ряда вопросов, в частности вопроса создания довольно сложных алгоритмов управления. Поэтому важно не только оценить возможности теоретически оптимальной системы управления точностью, но и предельные возможности систем данного назначения.  [c.94]

Придание системе управления точностью адаптивных свойств может быть выполнено программным способом. Программный способ создания адаптивных систем в сочетании с микропроцессорной техникой открывает перспективное направление в создании широкоуниверсальных систем управления точностью обработкой. Такие системы позволяют производить не только корректировку управления рабочими органами станка для компенсации возможной ошибки, но и корректировать внутренний алгоритм работы системы, обеспечить обработку необходимого числа входных параметров для расчета оптимальной поправки и необходимое быстродействие системы. Например, алгоритм управления может быть составлен так, чтобы система не затрачивала время на учет  [c.94]

Влияние описанного дефекта на станках 505 удалось в значительной мере устранить путем установки упора специальной конструкции на поперечной каретке суппорта. Диаграмма отжатий суппорта и соответствующих им отклонений размеров деталей после установки упора представлена на рис. 29, б. Общая жесткость системы увеличена на 50% (с 1000 до 1500 кгс/мм), а точность обработки — на 30%.  [c.81]

Выходными параметрами станка как технологической системы, характеризующими точность обработки, являются точность размеров точность формы точность взаимного положения качество поверхности.  [c.84]

Ультразвуковая обработка — изыскание новых эффективных операций на базе последних достижений ультразвуковой обработки (системы принудительной циркуляции абразивной суспензии, совмещение ультразвуковой обработки с другими процессами), обеспечивающих повышение производительности процесса в 3—10 раз, независимость скорости обработки от глубины прошивания, повышенную точность обработки и др.  [c.106]

Большое значение приобретает адаптивное управление режимами резания в зависимости от условий обработки. В качестве управляемых могут быть использованы следующие параметры максимально возможный съем металла, который определяется по крутящему моменту на шпинделе или по величине отжатия шпинделя станка или детали максимальная производительность обработки, которая заключается в нахождении оптимального соотношения между максимально возможным съемом металла и износом инструмента точность обработки, которая достигается измерением деталей и подналадкой положения режущих инструментов в процессе обработки класс чистоты обработанной поверхности, который определяется непрерывным измерением шероховатости поверхности или косвенным путем, например по вибрации станка минимальные затраты на обработку — один из основных параметров, для обеспечения которых и создаются адаптивные системы.  [c.158]

Для создания теоретических основ технологии машиностроения большое значение имели работы Н. А. Бородачева по анализу качества и точности производства К. В. Вотинова, осуществившего обширные исследования жесткости технологической системы станок — приспособление — инструмент — заготовка и ее влияния на точность обработки А. А. Зыкова и А. Б. Яхина, положивших начало научному анализу причин возникновения погрешностей при обработке. В 1959 г. вышла книга В. М, Кована Основы технологии машиностроения , обобщившая научные положения технологии машиностроения и методику технологических расчетов, относящиеся к различным отраслям машиностроения. Задачи экономии металла и повышения производительности труда при механической обработке теоретически обоснованы Г. А. Шаумяном.  [c.7]


Дальнейшее расширение технологических возможностей станков с ЧПУ неразрывно связано г, совсршенствовзнмем системы управления. Системы ЧПУ берут на себя функции автоматической компенсации зоны нечувствительности в приводах при троганни с места и реверсировании направления движения. При этом повышается точность обработки.  [c.219]

Все большее распространение находят самоприспосабливаю-щиеся системы программного у(1равлени5 (с автоматическим регулированием, адаптивные), изменяющие ражимы работы станка в зависимости от условий резания. Адаптивные системы управления повышают производительность работы станка, повышают точность обработки, предохраняют режущие инструменты от случайных поломок, исключая чрезмерные нагрузки на них.  [c.219]

Гидроцилиндр описанной системы следящего привода называют исполнительной частью, а гидрозолотник - управляющей или задающей частью устройства. Недостатком этого способа управления машинами-автоматами является некоторое запаздывание движения инструмента относительно движения щупа, а также возможные колебания стола. Их уменьшение достигасзся рациональным конструированием устройства при обеспечении необходимой точности обработки поверхности изделия. Преимущество гидрокопировального устройства управления по сравнению с механическими копировальными устройствами состоит в разгрузке копировального устройства, а следовательно, большей долговечности и точности действия.  [c.134]

Впервые термин технологическая надежность станков был введен А. С. Прониковым [63]. Это понятие определено А. С. Прониковым как способность станка сохранять качественные показатели технологического процесса (точность обработки и качество поверхности) в течение заданного времени . В работах 11, 24, 72] были рассмотрены некоторые количественные оценки технологической надежности токарно-револьверных автоматов, прецизионных токарных станков, бесцентровых внутришлифовальных, радиально-сверлильных и других видов станков. В этих работах исследуется в основном только способность сохранять точность обработки в течение определенного периода времени. Но, очевидно, что точностные характеристики обработанных деталей зависят не только от состояния станка, но и от многих других факторов (состояние инструмента, оснастки, характеристики материалов и т. д.). Поэтому логическим развитием понятия технологическая надежность станка явилось введение термина технологическая надежность . И. В. Дунин-Барковский [24] определил это понятие как свойство технологического оборудования и производственно-технических систем, таких, как станок — приспособление-инструмент — деталь (СПИД), система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранять на за-  [c.184]

Некоторые динамические явления представляют серьезную опасность для конструкций, например, резонанс, возникающий в колеблющейся системе и состоящий в значительном нарастании, при определенных условиях, перемещений, а следовательно, и напряжений. Серьезную опасность для конструкций могут представить высокочастотные колебания с малой амплитудой. Так, вибрдция отрицательно влияет на работу приборов, снижая точность их показаний, на работу станков, понижая точность обработки на них деталей. Вибрация ускоряет износ деталей машин, например, зубьев колес зубчатой передачи. Вибрация может явиться одной из причин исчерпания выносливости (проявления усталости) металла. Весьма сложное и многообразное отрицательное воздействие оказывает вибрация на организм человека.  [c.8]

При формообразовании полостей штампов, пресс-форм и т. п., на детали копируется форма инструмента-катода, который непрерывно или дискретно перемещается по направлению к заготовке при этом в приводе подачи для поддержания постоянным межэлек-тродного зазора применяется следящая система. Характерным для формообразования сложных поверхностей является большая неравномерность снимаемого припуска, что отражается на точности обработки.  [c.160]

Выпускаются станки, оснащенные системами абтоматичееком (адаптивного) управления. Эти системы применяют и в станках программного управления. За разработку и внедрение системы адаптивного управления станками группа сотрудников Московского станкоинструментального института во главе с заслуженным деятелем науки и техники РСФСР проф. д-ром техн. наук Б. С. Балакшиным удостоена в 1972 г. Ленинской премии. Применение этих систем позволяет оптимизировать режим обработки. Оптимизация улучшает условия работы инструмента, способствует повышению его стойкости, дает ош,утимую прибавку в производительности и стабилизирует точность обработки.  [c.174]

Позиционные системы характерны для станков сверлильно-расточной группы. Программа в этом случае должна обеспечивать в нужной последовательности перемещение стола с заготовкой или инструмента в заданную точку обработки. Траектория перемещения, как и скорость его, не связана непосредственно с точностью обработки. Перемещение может производиться в каждый момент только по одной координате, скажем сначала по оси XX, затем по оси YY. В олее сложном случае позицирование осуществляется одновременно по двум координатам, т. е. сразу по оси XX и по оси YY. Скорость позицирования берется по возможности максимальной с тем, чтобы затратить на выход в заданную позицию минимальное время. Она замедляется только в конце хода, чтобы обеспечить точный останов, исключить или свести к минимуму перебег по инерции . В станках данного типа возможно также управление перемещением шпинделя по вертикали (ось Z), а также поворотом стола.  [c.176]

Повышение вапасов на иаиос в эксплуатации, как н запасов прочности в конечном счете достигается за счет некоторого повышения требований к точности обработки (некоторого ужесточения допусков) и резервирования таким образом части прежних допусков (по системе OGT) для повышения сроков службы машин. При предварительном опросе предприятий эффективность создания запасов на  [c.72]

В действительности точный прогноз отклонения размера возможен лишь в идеальном случае, когда известны все факторы, порождаюп1 иб отклонение размера и формы, и между ними существуют неизменные во времени функциональные зависимости. Поэтому при изучении динамических свойств системы СПИД (станок—приспособление—инструмент—деталь) и при составлении ее математической модели необходимо рассматривать эту систему с учетом случайного, а часто и неопределенного характера факторов, порождающих отклонение размеров. Чем больше факторов, влияющих на размеры и форму детали, будут учитываться проектируемой системой управления, тем полнее информация, используемая в предсказании, тем меньше будет ошибка в предсказании. Однако увеличение количества учитываемых факторов значительно удорожает систему и делает ее менее надежной. В этом проявляется противоречивый характер соотношения Д1ежду точностью обработки и себестоимостью.  [c.94]

В системе Минстанкоирома разработаны технико-экономические условия инструментального завода будущего для выпуска гостированного режущего инструмента узкого диапазона, поскольку это отражает одно из основных направлений дальнейшего развития специализированного инструментального производства. В качестве представителя приняты сверла с коническим хвостовиком диаметром 14,25—25 мм, конструкция которых учитывает требования повышения точности обработки, ускорения сроков освоения новых типов станков и обеспечивает высокую режущую  [c.320]


Смотреть страницы где упоминается термин Системы Точность обработки : [c.56]    [c.168]    [c.122]    [c.18]    [c.197]    [c.54]    [c.165]    [c.28]    [c.128]   
Справочник технолога-машиностроителя Том 1 Изд.4 (1985) -- [ c.592 , c.593 , c.594 , c.595 , c.596 ]

Справочник технолога-машиностроителя Т2 (2003) -- [ c.805 , c.806 , c.807 , c.808 , c.809 , c.810 , c.811 ]



ПОИСК



Влияние жесткости системы станок — приспособление — инструмент — деталь на точность токарной обработки — Влияние температурных деформаций станка, резца и детали на точность токарной обработки

Влияние температурного режима технологической системы С—3 — И на точность обработки

Использование следящей системы управления для коррекции режима или взаимного расположений обрабатываемой детали и инструмента с целью повышения производительности и точности обработки

Кобринский А. Колискор А. ШЛесковский Е. И., СергеевВ. И. Оценка предельной эффективности применения самонастраивающейся системы для позышения точности обработки

Обработка Точность обработки

Обслуживание техническое АЛ — Диагностика АЛ по производительности и точности обработки 286, 287 системы смазки

Определение влияния упругих деформаций системы станок — инструмент — обрабатываемая деталь на точность обработки

Определение допусков на заготовки и параметры преобразующей системы по заданной точности обработки

Определение характеристик системы автоматического регулирования (САР) точности токарной обработки

Повышение точности и производительности обработки методом управления упругими перемещениями системы СПИД

Повышение точности обработки деталей на станках с ЧПУ и в гибких производственных системах (Р. К. Мещеряков, Стародубов)

Система С-З-И Податливость Расчетные технологическая — Режим температурный — Влияние на точность обработки

Системы Повышение точности обработки

Системы числового программного ж Увеличение точности обработк

Точность обработки деталей на станках с ЧПУ и в гибких производственных системах (Р. К. Мещеряков, К. Р. Мещеряков)

Точность обработки — Влияние температурного режима системы СПИД



© 2025 Mash-xxl.info Реклама на сайте