Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряженность переменная стационарная переменная

Далее рассматривается определение функций накопленной вероятности для пределов выносливости элементов различной формы как основа расчета на прочность при переменных напряжениях в стационарных и нестационарных условиях. Сначала анализируем случай плоского изгиба призматического элемента с двусторонними  [c.135]

Эксплуатационное требование. Сталь должна удовлетворять условиям работы в машине, т. е. обеспечивать заданную конструкционную прочность, что вначале определяется расчетными данными. Детален, рассчитываемых на статическую прочность, сравнительно мало. Это детали с большим начальным натягом, детали котлов и сосудов высокого давления, диски компрессоров и турбин и некоторые детали с малым числом плавных нагружений (иногда проводится расчет на малоцикловую усталость). Многие Детали машин работают в условиях, когда возникают напряжения, переменные по времени. Расчеты сопротивления усталости этих деталей при стационарном нагружении ведут по пределу выносливости с учетом конструктивных и технологических факторов.  [c.313]


Предполагается, что используется нагружение, обычное для усталостных испытаний, т. е. переменная составляющая нагрузки с постоянной амплитудой накладывается на стационарное или среднее значение нагрузки, являющееся постоянной величиной. Реализующиеся в деталях при усталостных испытаниях напряжения можно выразить несколькими способами через среднее напряжение, переменное напряжение, максимум напряжения, минимум напряжения или через соотношение напряжений (отношение минимума напряжений к максимуму или амплитуды переменной составляющей к среднему напряжению и т. д.). Любая пара из этих напряжений необходима и достаточна для описания условий нагружения. Предположим, что нами выбрана произвольная пара указанных напряжений, например Оу и Ог. Тогда для гладкого образца, подвергнутого действию полного напряжения, соотношение между этими двумя напряжениями и количеством циклов, приводящим к разрушению, устанавливается из эксперимента и представляется или в графическом-виде с помощью диаграммы предельных напряжений, или в аналитической форме  [c.194]

Все стационарные изделия, работающие под напряжением свыше 12 в, должны иметь надежное заземление. При номинальном напряжении переменного или постоянного тока 250 в и выше в приборе должны быть предусмотрены два заземляющих болта, а при номинальном напряжении менее 250 в — один заземляющий болт. На малогабаритном оборудовании допускается установка одного заземляющего болта.  [c.701]

Автоматические устройства, сигнализация и др. подают электрические импульсы по отдельным электрическим цепям, которые называют оперативными цепями. Для питания этих цепей служат источники оперативного тока — аккумуляторные батареи постоянного тока для небольших электростанций — батареи автомобильного типа напряжения 12, 24, 48 в и для мощных электростанций крупные стационарные батареи на напряжение ПО и 220 в. От этих же батарей осуществляют аварийное освещение электростанции при исчезновении напряжения (переменного тока) на шинах щита освещения происходит автоматическое переключение на питание от шин постоянного тока. Расход электроэнергии на аварийное освещение составляет 10—30% расхода на нормальное освещение.  [c.261]

Характерной особенностью многих из этих нагрузок является то, что, будучи постоянным для одних элементов машины (например, для металлоконструкции мостового крана), они вызывают стационарные переменные нагрузки или стационарные переменные напряжения в других ее элементах (в частности в деталях механизма передвижения). В данном примере (рис. 7) это обусловлено поочередным входом в зацепление зубьев зубчатых колес (с появлением пульсирующих нагрузок и напряжений, изменяющихся по пульсирующему циклу), а также вращением валов и осей относительно нагрузок (с появлением напряжений, изменяющихся по симметричному циклу). В том же кране постоянная нагрузка от силы тяжести тележки с грузом, перемещаясь относительно моста, вызывает в металлоконструкции переменные напряжения, изменяющиеся по асимметричному циклу.  [c.34]


Машины могут работать в условиях постоянных (установившихся, стационарных) режимов, при которых амплитуда и постоянные составляющие напряжений неизменны, или переменных (нестационарных) режимов, при которых амплитуда и постоянная составляющая или один из этих параметров переменны. Постоянные режимы характерны для машин центральных силовых и насосных станций и транспортных машин дальнего следования, переменные — для большинства машин — универсальных машин орудий, транспортных машин и т. д.  [c.12]

Питание радиостанции осуществляется от селенового выпрямительного устройства, рассчитанного на включение в сеть переменного тока с напряжением 41 в. С выхода выпрямителя снимаются следующие напряжения +2 в — для накала ламп, питания пульс-моторов и реле Ч-ЗОО в и -1-450 в — для питания анодных и экранных цепей ламп и —100 в — для смещения. Для питания радиостанции в стационарных условиях преду-  [c.833]

Испытания на усталость по Велеру и на повреждаемость по Френчу проводят при стабильных по времени и непрерывно действующих циклических нагрузках. Этот вид нагружения свойствен лишь некоторым машинам, работающим непрерывно и на постоянном режиме (стационарные силовые двигатели, электрогенераторы, мащины, встроенные в автоматические линии непрерывного действия). Большинство же машин работает на переменных режимах с правильно или неправильно чередующимися цикла.ми и различным уровнем напряжений в циклах (транспортные, строительные и т. д.).  [c.306]

Несущая способность элементов конструкций по сопротивлению усталости при циклическом нагружении рассматривается в свете вероятностных представлений о возникновении разрушения и об уровне действующих переменных напряжений. При этом следует иметь в виду основные условия нагруженности изделий и их элементов. Многим из них свойственны стационарные режимы переменной напряженности, уровень которой в пределах большого парка однотипных конструкций и их деталей от изделия к изделию меняется, причем отклонение уровней носит случайный характер. Примером таких деталей являются лопатки стационарных турбомашин. Условия возбуждения колебаний этих деталей в однотипных машинах зависят от изменчивости условий газодинамического возбуждения и механического демпфирования, уровня частоты собственных колебаний и эффекта их связности в роторе с лопатками (что обычно является результатом технологических отклонений). Подобные условия имеют место и для многоопорных коленчатых валов стационарных поршневых машин при укладке их на не вполне соосные опоры, для шатунных болтов из-за неодинаковости их монтажной затяжки и т. д.  [c.165]

Статистическая оценка действующих в детали номинальных переменных напряжений и напряжений, характеризующих ее несущую способность (с учетом влияния концентрации, неравномерности распределения напряжений и размеров сечений) позволяет определить запас прочности в зависимости от вероятности разрушения для совокупности одинаковых деталей парка однотипных изделий. Для стационарно нагруженных изделий условие разрушения отдельных из них определяется вероятностью превышения амплитуды переменных напряжений ffa над пределом выносливости (ст-1)д, имея в виду их статистическое распределение, независимое друг от друга. Разность этих величин, если они описываются нормальным распределением  [c.168]

Элементы энергетического оборудования при высоких температурах наряду с ползучестью испытывают циклические температурные нагрузки. Пуски и остановы турбин приводят к возникновению дополнительных (к внешним нагрузкам) напряжений. Возможны иные (планируемые и аварийные) источники нарушения стационарных режимов эксплуатации. Поэтому актуальными стали вопросы оценки прочности конструкций при нестационарных условиях работы материала. Этим объясняется рост числа исследований, посвященных проблеме оценки работоспособности материалов в условиях переменных температурно-силовых режимов эксплуатации оборудования.  [c.165]

Циклическое воздействие температурных напряжений при работе турбин в переменном режиме создает опасность малоцикловых термоусталостных повреждений металлов, в первую очередь в зонах концентрации напряжений на поверхности роторов. При этом термоусталостная поврежденность суммируется с поврежденностью от ползучести под действием стационарных и остаточных напряжений в условиях высоких температур. Развитие трещин после их появления ускоряется корродирующим воздействием паровой среды.  [c.228]


Стационарные установки электрохимической защиты питаются от сети переменного тока напряжением 127/220 в, относятся к потребителям третьей категории и не требуют резервных питающих линий, однако перебои в подаче электроэнергии не должны превышать 2—3 суток.  [c.168]

Высокочастотное распыление. Разряд на постоянном токе нельзя использовать для распыления диэлектрических материалов, так как электроны должны непрерывно уходить с мишени во внешнюю цепь. Поэтому мишень должна быть проводящей. Это ограничение снимается при проведении разряда на переменном токе достаточно высокой частоты, именно такой, при которой за половину периода высокочастотного напряжения, приложенного к электродам Э1 и Э2 (рис. 2.7) электроны не успевают пройти расстояние между анодом и катодом (обычно это частота 10—50 МГц). В этом случае электроны попеременно движутся то к электроду Э1, то к электроду Э2, производя на своем пути ионизацию газа. Для поддержания стационарного характера разряда необходимо, чтобы за время своей жизни каждый электрон произвел в среднем одну ионизацию. Роль электродов Э1 и Э2 сводится теперь лишь к созданию поля в газоразрядном промежутке, и их можно в принципе вынести за пределы разрядной камеры. В установках высокочастотного распыления эти электроды покрываются мишенями MJ и М2 из распыляемого диэлектрика.  [c.68]

Анализ режимов термомеханического нагружения. Эксплуатационный режим высоконагруженных элементов конструкций в течение характерного периода весьма сложен спектр нагрузок включает статическую, повторно-статическую (низкая частота) и переменную (высокая частота) составляющие. Типичный режим работы одного из элементов высоконагруженной конструкции (рис. 1.14) характеризуется существенной нестационарностью температуры и напряжений, а также наличием и чередованием нестационарных и стационарных нагрузок.  [c.18]

Стационарные приборы ТК-2, ТК-2М, ТК-14-250 (ГОСТ 23677—79) питаются от сети переменного тока с напряжением 220 В с отклонениями—10 - +15% и частотой 50 1 Гц.  [c.247]

В результате химического никелирования и диффузионного хромирования стационарные потенциалы образцов повысились соответственно до —280 и —40 мВ, что в среднем на 300 мВ и 550 мВ положительнее потенциалов незащищенных сталей. Плотность коррозионного тока в незащищенных и ненагруженных переменными напряжениями сталей составляла 0,1—0,2 мА/см . После никелирования и хромирования плотность тока уменьшилась соответственно на 3 и 4 порядка. Для хромового покрытия характерно самопроизвольно возникающее устойчивое пассивное состояние при потенциалах от —200 мВ и выше при токе полной пассивации, достигающем 0,00008 мА/см (рис. 94).  [c.178]

На фиг. 70 показана примерная осциллограмма напряжений на поверхности вала при медленном переходе через критическую скорость. Переменная составляющая Ху колебаний с частотой скорости вращения вызвана весом диска и ее амплитуда все время остается неизменной. Постоянная составляющая х (при стационарном вращении — постоянная, а в данном случае медленно изменяющаяся величина (возникает вследствие изгиба вала силой инерции от неуравновешенного диска при переходе через критическую скорость меняется знак ее амплитуды, отсчитываемой от нулевого положения. Наконец, при появлении увеличивающихся вблизи критической скорости реакций опор обнаруживается составляющая колебаний с частотой, равной удвоенной скорости вращения вала. Последняя имеет тем большую выраженность, чем больше упругая податливость опор.  [c.408]

На фиг. 9 представлены общий вид и схема стационарной испытательной установки. Испытания производятся переменным током частотой 50 гц при температуре от 7 15 до т 35° С. Начальное напряжение не должно превышать 50% испытательного напряжения. Результаты считаются удовлетворительными, если во время испытания не происходит пробоя изоляции и перекрытия ее скользящими разрядами. Для производства испытания резиновые боты, галоши, рукавицы и перчатки погружаются в обычную воду, которой они заполняются и внутри. Необходимо, чтобы уровень воды как снаружи, так и внутри их был на 5 см ниже верхнего края испытуемого пред-  [c.749]

Как отмечалось в 1 и 2, условие нагружения конструкций натриевых реакторов на быстрых нейтронах характеризуется температурами до 550—610° С для хромоникелевых аустенитных сталей типа 18-8 и 500° для хромо молибденовых. Корпус реактора и внутриреакторные конструкции подвергаются охрупчиванию при облучении нейтронами (удлинение стали типа 18-8 становится меньше 10%). Эксплуатация связана с чередованием стационарных и нестационарных режимов (пуск, останов, аварийное расхолаживание, изменение мощности и др.), и по предельным оценкам число переходных режимов с изменением температур до 400—500° С не превышает 1500. Суммарное время переменных тепловых режимов составляет не более 10% от общего временного ресурса (2- --4-3)-10 ч., т. е. основное время эксплуатации относится к стационарному режиму. Накопление циклических и длительных статических повреждений сопровождается при эксплуатации изменением состояния металла по химсоставу и механическим свойствам. Получение экспериментальных кривых усталости при реальных деформациях (размах до 0,5%) и длительности нагружения представляет невыполнимую задачу, поэтому в любом варианте расчета прочности неизбежна необходимость обоснования экстраполяции данных на большие сроки службы. Существующие предложения по расчету длительной циклической прочности отличаются как по определению напряжений и деформаций, так и по расчету предельных повреждений.  [c.37]

Скорость развития трещины. При стационарном нагружении скорость развития трещины зависит от уровня переменных напряжений. В тех случаях, когда нагружение осуществляется ступенями с последующим уменьшением нагрузки, рост трещины заметно задерживается (рис. 2.20, а), и, наоборот, при ступенчатом возрастании нагрузок трещины начинают увеличиваться с возрастающей скоростью (рис. 2.20, б).  [c.103]


КШВГТ-10 ТУ 16-705.101-79 То же для стационарной и подвижной прокладки и присоединения передвижных механизмов к электрическим сетям на номинальное напряжение 10 кВ переменного тока частотой 50 Гц  [c.139]

Теория функций комплексного переменного ггаппа применение для решения плоской задачи теории упругих температурных напряжений при стационарном распределении температуры В этом случае функция напряжений является бигармонической [см.(4.4.24)]. Последовательность решения задачи определения температурных напряжений этим методом можно найти в [43, 68, 76].  [c.215]

Для вероятностной оценки сроков службы по критерию сопротивления усталостному разрушению и для описания надежности элементов конструкций в условиях эксплуатации Я. Сед-лачек [75] предложил использовать статистическое описание процесса усталости при стационарном переменном нагружении, позволяющее охарактеризовать рассеяние сроков службы элементов конструкций. Для нестационарной нагруженности, описываемой фиксированной функцией распределения величин измеренных напряжений Б. Лундберг [66] предложил определять допустимые сроки службы элементов авиационных конструкций в зависимости от требований к их надежности, используя линейное суммирование повреждения и кривые усталости с вероятностной оценкой разрушающего числа циклов.  [c.255]

Ранее предполагалось, что для диэлектриков в основном характерна ионная и молионная электропроводность. Чтобы подчеркнуть это обстоятельство, диэлектрики назывались электролитами, потому что при ионной электропроводности на постоянном напряжении происходит перенос вещества — электролиз. Очевидно, что при этом проводимость изменяется со временем из-за истощения носителей заряда, так как в любом диэлектрике количество свободных ионов или молионов ограничено, а на постоянном напряжении эти носители постепенно мигрируют в приэлектродную область и там накапливаются [1]. Таким образом, ионная или молионная электропроводность является одной из причин электрического старения диэлектриков (см. 2.4), В переменном электрическом поле, однако, накопления ионов в приэлектродной области не происходит, проводимость диэлектрика, в том числе ионная и молионная, стационарна.  [c.42]

Крайне важно, чтобы измерения проводились в стационарных условиях. Ртутный источник света на изотопе лазер и все электронное оборудование нужно включить по крайней мере за 4 час до начала измерений. Необходимо, чтобы лазер работал на одной угловой и одной осевой моде (на одной частоте). Прежде чем проводить измерения, нужно настроить лазер на максимум выходной мощности (изменяя расстояние между зеркалами при помощи пьезоэлектрического элемента), чтобы работать либо в центре кривой усиления (если разрядная трубка наполнена газом с различными изотопами), либо в центре лэмбовского провала [54], если используются изотопически чистые газы. Осевая перестройка эталона облегчается, если сканирующее напряжение переменной амплитуды накладывать на постоянное смещающее напряжение, которым определяется абсолютная частота лазера. Выходное напряжение фотоумножителя, измеряющего интенсивность излучения лазера, развертывается на экране осциллографа, причем в качестве напряжения горизонтальной развертки подается сканирующее напряжение.  [c.444]

Все стационарные изделия, работающие под напряжением выше 12 в, должны иметь надежное заземление. При нолшнальном напряжении переменного или постоянного тока 250 в и выше в приборе должны быть предусмотрены два заземляющих болта, а при номинальном напряжении менее 250 в — один заземляющий болт.  [c.713]

Выше были рассмотрены расчеты на прочность при напряжениях, переменных во времени, основанные иа предположении, что максималыгае и ми1Ш-мальиое напряжения во времени постоянны. Такой режим изменения напряжений называется установившимся, или стационарным.  [c.738]

Наряду с этим используется понятие о накопленной вероятности значения амплитуды напряжений соответствующий график Ф(оа) = //(aa)d(Ta представлен на рис. 8.1,6. По оси абсцисс отложено суммарное число повторения амплитуды напряжений, равной или превышающей Tai- Таким образом, переменная напряженность совокупности одинаковых деталей парка однотипных машин, работающих в стационарных условиях, может быть охарактеризована средним значением амплитуды  [c.166]

Уильям Роуан Гамильтон, видный ирландский математик, в статьях Об общем методе динамики , написанных в 1834—1835 гг., для определения движения вводит новые переменные и новые функции, формулируя общий принцип наименьшего действия. "При этом главная функция, зависящая от начальных и конечных координат и времени, равна сумме живых сил (Г) и сил напряжения (Я). Последние, называемые силовой функцией, для стационарных, то есть не изменяющихся во времени, консервативных систем (механических систем, при движении которых сумма Т- П постоянна), выражают полную энергию системы.  [c.117]

Осевое перемещение сильфона обусловлено циклическим изменением температуры вследствие температурных деформаций металлических элементов, а также переменности параметров энергонесущей среды (давления и др.), зависящих от температуры теплоносителя. Для режима эксплуатации компенсирующих элементов характерно циклическое нагружение со стационарными этапами, обусповленное периодическими остановами и пусками. При этом осевое перемещение торцов компенсатора изменяется синхронно и синфазно с температурой теплоносителя. При расчетах напряжения от внутреннего или внешнего давления в компенсаторах суммируют с напряжениями, вызванными перемещениями, учитывая цикличность перемещений и давления.  [c.153]

Более рациональный способ удаления сломавшихся шпилек (особенно термически обработанных) из отверстия небольших корпусных деталей — это электроэрозионное высверливание их с помощью медного электрода. Для этой цели применяют стационарные (для мелких узлов) й переносные установки. Установки питаются от сети переменного тока напряжением 220 или 380 в. Скорость съема металла 4—20 mm Imuh. На удаление сломавшейся шпильки М8 длиной 25 мм затрачивается примерно 25 мин.  [c.142]

Выбор конструкции. При проектировании силовых сетей в целях экономии материала проводов рекомендуется применять преимущественно а) голые токопроводы, в первую очередь стальные б) шинные сборки в) шины в к Н1лах, в первую очередь стальные г) общие магистрали для силовых и осветительных приёмников д) питание стационарных приёмников от крановых троллеев е) сталь вместо меди для магистралей постоянного тока — во всех случаях, когда это не сопряжено с конструктивными трудностями для магистралей переменного тока — при токе до 500 й для троллеев — во всех случаях для воздушных силовых сетей — когда это допускается по условиям потери напряжения для воздушных линий наружных силовых сетей—проводку голыми проводами магистралей внутри цехов с соблюдением особых условий ПУЭ, 218—233 [12].  [c.470]

Максимальные температурные напряжения, как правило, возникают на теплопередающей поверхности. С поверхности обычно начинается развитие трещин. Для учета различных причин, обусловливающих напряж-iiHoe состояние поверхности, допустимо воспользоваться принципом суп позиции и рассматривать раздельно стационарные напряжения (от давления, теплового потока, разверки температур по периметру и пр.), формулы для расчета которых приведены в справочной литературе (см., например, [32]),и переменные напряжения, в частности, связанные с температурными пульсациями.  [c.8]


Стационарные сильноточные П. у. В принципе коаксиальные П. у. можно сделать стационарными (работающими в непрерывном режиме), если поддерживать напряжение ц непрерывно подавать между электродами рабочее вещество. Для оптимизации процесса в случае работы на газе канал надо делать переменной ширины (рис. 4,а). Если анод сделать сплошным, то при пост, подаче рабочего вещества и непрерывном увеличении разрядного тока /р скорость истечения плазмы и кпд ускорителя сначала будут расти (уменьшается уд. вес затрат на ионизацию, нагрев плазмы и потери на стенки). Однако при нек-ром значении /р происходит вынос большой части разрядного тока за срез ускорителя, напряжение резко возрастает, падает кпд, в ускорителе возникают колебания. Наступает т. н. критич. режим. Его физ. причиной является в конечном счёте обеднение ионами прианодной области, к-рое происходит под действием объёмного электрич. поля. Такой критич. решим наиб, эффективно устраняют подачей части рабочего вещества через анод (переход в режи.м ионного токопереноса ), для чего используют не сплошной, а пористый или стержневой анод. Наиб, часто такая схема применяется в квази-стационарных П. у., работающих при мощностях Вт с длительностью импульса —1 мс.  [c.611]

Резервный возбудитель генераторов паровой и газовой турбин при пуске установки используется как генератор постоянного тока для разгонного электродвигателя газовой турбины. Нормально разгонный двигатель газовой турбины работает как основной возбудитель генератора. Трехмашинный агрегат состоит из генератора постоянного тока компаундного типа, питающего цепь напряжения 220 в, и электродвигателя переменного тока напряжением 0,380 кв, который приводит во вращение генератор постоянного тока. На этом же валу установлен электродвигатель постоянного тока ПО в, питающийся от стационарной аккумуляторной батареи. В случае исчезновения напряжения 0,380 кв автоматически включается двигатель постоянного тока ПО в, благодаря чему питание цепей постоянного тока 220 в не прекращается.  [c.80]

Основное условие рациональной (с экономической точки зрения) эксплуатации мощных энергоустановок — обеспечение необходимого достаточно длительного ресурса безаварийной работы, достигающего 100—200 тыс. ч на стационарном режиме, и перевод большой группы энергоблоков в полупиковые и пиковые режимы работы для осуществления частичного и глубокого регулирования выработки энергии. Число изменений режимов работы, а также полных остановов энергоблоков за срок назначенного ресурса может достигать 10 —10 и более. Работа энергоблоков на переменных режимах ведет к повышению местной на-груженности (особенно температурных напряжений) и ускорению накопления эксплуатационных повреждений.  [c.6]

Итак, мы выше подобрали безопасные размеры вала зубчатой передачи для условий стационарного режима нагружения, когда вращающий момент Т = onst. В расчете подразумевалось, что материал вала обладает физическим пределом выносливости <т i. В соответствии с этой 1лоделью вал можно эксплуатировать при заданном, так называемом номинальном моменте Т неограниченно долго. Другими словами, количество его оборотов N (равное числу циклов переменных напряжений в поперечном сечении) может быть бесконечно велико  [c.504]


Смотреть страницы где упоминается термин Напряженность переменная стационарная переменная : [c.525]    [c.82]    [c.411]    [c.87]    [c.140]    [c.33]    [c.203]    [c.172]    [c.125]    [c.602]    [c.551]    [c.11]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.525 ]



ПОИСК



Напряженно

Напряженность

Напряженность переменная



© 2025 Mash-xxl.info Реклама на сайте