Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроинтерферометры

Из оптических приборов большее применение нашли двойной микроскоп и микроинтерферометр академика В. П. Линника.  [c.90]

Использование микроинтерферометра для измерения неровностей поверхности основано на явлении интерференции света, которое можно наблюдать с помощью специального оптического устройства. Микроинтерферометры применяют в лабораторных условиях для оценки наиболее чистых поверхностей с неровностями высотой в пределах 0,02—2 мк. Поле зрения у этих приборов малое — до 0,5 мм .  [c.91]


Понятно, что в этом случае необходимы источники света очень высокой степени монохроматичности. В. П. Линник сконструировал микроинтерферометр , представляющий собой маленький интерферометр Майкельсона, надевающийся на обычный микроскоп. Этот прибор позволяет наблюдать и измерять мельчайшие неровности поверхности и может служить для исследования качества поверхности.  [c.136]

Интерференционные методы широко применяются также для контроля чистоты обработки металлических поверхностей. К приборам такого рода принадлежит микроинтерферометр В. П. Лин-ника, упомянутый в 29.  [c.148]

На рис. 9 показана схема двухлучевого микроинтерферометра Линника. В ее основу положен принцип действия интерферометра Майкельсона. Свет от источника 1 (лампа накаливания) проходит через конденсор 2 и диафрагму <3, зеркалом 4 делится на два когерентных пучка, которые фокусируются объективами 5 и 5 на эталонное зеркало в и контролируемую поверхность 7 соответственно. После отражения от эталона и изделия пучок проходит через те же элементы схемы и фокусируется линзой 8 в плоскости диафрагмы 9, в которой с помощью окуляра /О наблюдают интерференционную картину взаимодействия эталонного и рабочего пучков света.  [c.67]

При контроле шероховатости крупногабаритных изделий предварительно снимают слепок (реплику) с его поверхности, который затем помещают в кювету с иммерсионной жидкостью, располагаемой в фокальной плоскости микроинтерферометра, и исследуют обычным методом. Этот способ кон-  [c.68]

Микроинтерферометры обычно снабжают устройством для фотографирования интерференционной картины.  [c.68]

Схема многолучевого микроинтерферометра показана на рис. 11. Свет от источника / (ртутная лампа низкого давления, дающая монохроматическое излучение, выделяемое фильтром 10) через диафрагму 2 проходит конденсор 3 и параллельным пучком падает на полупрозрачное зеркало 4. После отражения пучок проходит пластину 5, накладываемую на объект 6 под малым углом (0. Ее нижняя сторона покрыта слоем вещества с коэффициентом отражения, близким к коэффициенту отражения контролируемой поверхности.  [c.69]

С помощью почти всех микроинтерферометров можно контролировать изделия не только в отраженном, но и в проходящем свете. При этом они используются в качестве оптических толщиномеров высокой точности для контроля различных пленок, прозрачных покрытий и т. п. (табл. 7).  [c.70]

Микроинтерферометр — Технические характеристики 71  [c.483]

При стандартизации размерных рядов неровностей поверхности в начале использовали Rq (или Я к) — среднее квадратическое отклонение профиля неровностей от его средней линии (США) и Ra —> среднее арифметическое, точнее, среднее абсолютное отклонение его от той же линии (Англия). Эти параметры измеряли электромеханическими профилометрами возможно потому, что они представляют собой хорошо известные в электротехнике эффективное и среднее значения функций, а также статистические характеристики, подходящие для описания рассеивания случайной ординаты профиля относительно ее среднего значения, за которое в данной ситуации была принята средняя линия. Позднее, повсеместно, а также в международном масштабе, был принят параметр Ra из соображений, приведенных выше. Сохранившийся до настоящего времени параметр Ra используют с начала 40-х годов, т. е. более 30 лет. Для измерений оптическими приборами (двойными микроскопами и микроинтерферометрами) параметр Ra не подходит, так как требует трудоемких вычислений. Поэтому применительно к этой категории средств измерений неровностей принимали различные модификации характеристик общей высоты неровностей, такие, как R max — максимальная на фиксированной длине высота неровностей (ранее обозначавшаяся через Я а с). Яср — средняя высота неровностей и Rz—высота неровностей, определяемая по 10 точкам профиля. Для сопоставимости результатов измерений и однозначности стандартизуемых величин потребовалось выделить шероховатость из общей совокупности неровностей поверхности. Это сделали путем установления стандартного ряда базовых длин, полученного из рядов предпочтительных чисел. Значения параметров определяют на соответствующих базовых длинах. Неровности с шагами, превышающими предписанную базовую длину, в результат измерений шероховатости не входят, и стандартизация шероховатости поверхности на них не распространяется.  [c.59]


ГОСТ 19300—73 верхняя граница указана по данным завода — изготовителя микроинтерферометров.  [c.64]

Идея предложенных В. П. Линником микроинтерферометров заключается в сочетании интерферометра Майкельсона с измерительным микроскопом, что позволяет получать увеличенное в нужное число раз изображение интерференционной картины в поле зрения микроскопа и измерять координатным методом вырисовывающиеся таким образом неровности с помощью обычного винтового окулярного микрометра. При таких измерениях не нужно даже предварительно определять цену деления круговой шкалы барабана окулярного микрометра она получается сама собой при сравнении размеров неровностей профиля, выраженных в делениях шкалы, с шириной интерференционной полосы, выраженной в тех же делениях, поскольку, как указывалось выше, расстояние в одну полосу соответствует размеру неровности профиля поверхности, равному половине длины волны света, т, е. обычно Х/2 0,275 мкм.  [c.90]

Оптическая схема типичной модели двухлучевого микроинтерферометра МИИ-4 показана на рис. 22, а. От лампы 1 через конденсор 2, апертурную диафрагму 3, полевую диафрагму 4 и объектив 5 пучок лучей падает на пластину 8 с полупрозрачным слоем и разделяется на два пучка когерентных лучей примерно одинаковой интенсивности.  [c.91]

При измерениях микроинтерферометр МИИ-4 устанавливают вдали от источников вибраций на основании 24 (рис. 22, б) с демпфирующей подкладкой. Контролируемую деталь 18 кладут на координатный предметный столик 29 измеряемой поверхностью вниз. Установку объектива 6 (см. рис. 22, а) против нужного участка измеряемой поверхности можно выполнять либо перемещением детали на столике 29 (см. рис. 22, б), либо сообщением тому же столику продольного и поперечного перемещений посредством микрометрических отсчетных устройств 19, имеющих цену деления / круговых шкал барабанов, равную 0,005 мм, и диапазоны перемещений от 0 до 10 мм. Осветитель 28 включается в сеть переменного тока через трансформатор (127—220 В)/8 В. Мощность лампы 9 Вт.  [c.93]

Общее увеличение микроинтерферОметра МИИ-4 составляет 490 при визуальном наблюдении и 260 при фотографировании. Размеры поля зрения 0,32 мм при визуальном наблюдении и 0,10 мм при фотографировании. Апертура объектива 0,65. Масса прибора 23 кг и габариты 300 x 340 x 380 мм. Средняя арифметическая погрешность измерений, по данным завода-изготовителя, составляет 0,03—0,04 мкм при измерении неровностей высотой 0,05—0,10 мкм и 0,06—0,08 мкм — неровностей высотой 0,2—1,0 мкм. Однако нередко погрешности оказываются в 1,5—3 раза большими.  [c.95]

Общее увеличение микроинтерферометра МИИ-10 с 20-кратным увеличением окулярного микрометра составляет 500, а при фотографировании 200, фокусное расстояние — 10 мм, апертура 0,5, линейное поле зрения 0,36 мм и при фотографировании 0,12Х Х0,18 мм.  [c.97]

Таково назначение многолучевого микроинтерферометра МИИ-11, показанного на рис. 25.  [c.99]

Измеряемый объект устанавливают на предметный столик испытуемой поверхностью к объективу. Обычным для микроинтерферометров способом настраивают освещение (при снятой спер -тральной насадке). Надевают на визуальный тубус спектральную насадку и фокусируют окуляр на резкое изображение щели перемещением глазных линз окуляра при отключении спектральной призмы. Винтами 14 и 15 центрируют осветитель.  [c.102]

Воспроизведение профиля неровностей поверхности при использовании оптических приборов — микроинтерферометров, двойных микроскопов и т. д. сопряжено с фотографированием, которое не только требует затраты дополнительного времени, но и отделяет момент испытания поверхности и момент изучения ее воспроизведенного профиля между этими моментами лежит период обработки негатива и изготовления позитива. Поэтому за последние десятилетия не прекращаются поиски возможности непосредственной записи профиля световым лучом, который к тому же не деформирует неровности поверхности.  [c.122]

Определение параметра Определение этого параметра, как и остальных физически обоснованных параметров, опирается на воспроизведение профилей в виде записи на профилографах и кругломерах или фотографий, выполненных на микроинтерферометрах, растровых и двойных микроскопах.  [c.197]


Измерение тонких покрытий, имеющих толщину менее 2 мкм, т. е. когда метод должен быть чрезвычайно чувствительным, может осуществляться при помощи интерференционных приборов. Для этого пригоден выпускаемый нашей промышленностью серийно двухлучевой микроинтерферометр МИИ-4 (рис. 78).  [c.88]

Микроинтерферометр может быть выполнен и с одним объективом- При этом светоделитель ное веркало и эталон размещаются между микрообъекгивом и контролируемой поверхностью При работе в белом свете высота неровности  [c.68]

Наибольшая глубина рисок, измеряемых с помощью двухлучевых микроинтерферометров, определяется апертурой и увеличением микрообъектива. Согласно ГОСТ 9847—79 микроишер-ферометры рекомендованы для измерений неровностей от 0,1 до I мкм.  [c.68]

Спектральный диапазон микроинтерферометров можно существенно расширить, используя преобразователи изображения. Это позволяет распро-сгранить хорошо отработанные методы контроля на материалы, непрозрачные в видимой области спектра.  [c.70]

Технические характеристики микроинтерферометров для контроля шероховатости новерхно-сти и толщины прозрачных пленок (ГОСТ 9847—79)  [c.71]

Метод профилографирования заключается в оценке износа по профилограммам, снятым на определенном участке до и после изнашивания. Его рекомендуется использовать при стандартных испытаниях покрытий на изнашивание при фреттинг-коррозии [167]. Находят расстояние между средними линиями профиля и на основании полученных данных вычисляют интенсивность изнашивания с погрешностью не более 1-10 . Применяются профилограф-профило-метр модели 253 или оптические приборы двойной микроскоп, микроинтерферометр Линника и т. д. Износ методом профилографирования определяется обычно на образцах и деталях несложной формы с достаточно хорошо обработанной поверхностью.  [c.98]

МОЩЬЮ фотоулругих ИЛИ медных покрытий в) нанесением муаровой решетки или меток г) с помощью травящих реактивов д) с помощью узконаправленного пучка рентгеновских лучей е) интерференционным методом ж) с помощью косых лучей з) с помощью микроскопа и) голографическим весьма точным методом определения деформации. Если интерференционный метод объединить с непосредственным наблюдением деформации с помощью микроскопа, что осуществляется в микроинтерферометре, значительно увеличивается точность получаемых результатов по сравнению с методом косых лучей.  [c.40]

Для измерений оптическими приборами, о которых будет сказано в дальнейшем (двойными микроскопами, микроинтерферометрами и приборами теневого сечения), параметры Ra и Rq не подходят, так как требуют трудоемких операций. Поэтому применительно к этой категории средств измерений неровностей применяли различные модификации параметров общей высоты неровностей Rmiix. К последним относится, прежде всего стандартизированная в СССР высота неровностей профиля по десяти точкам Rz, представляющая собой сумму средних арифметических абсолютных отклонений точек пяти наибольших минимумов и пяти наибольших максимумов в пределах базовой длины  [c.35]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

МИИ-15), однообъективный (МИИ-9), иммерсионно-репликовый (MHH-lO)i Винтовой окулярный микрометр MOB. Микроинтерферометры предназначены для измерения профильным методом неровностей поверхности высотой от 0,03 до 1 мкм деталей, обладающих достаточной отражательной способностью.  [c.91]

Применяемый в микроинтерферометре МИИ-4 и в других микроинтерферометрах винтовой окулярный микрометр МОВ-1-15> (АМ-9-2м) состоит из 15-кратного компенсационного окуляра с диоптрийной наводкой, позволяющей производить коррекцию глаз наблюдателя, и измерительной части, включающей две прозрачные пластины. На неподвижной пластине нанесено восемь делений с интервалом 1 мм, а на подвижной — перекрестие и двойной штрих, как показано на рис. 22, г. Подвижную пластину перемещают вращением барабана микрометренного винта (с шагом 1 мм) под углом 45° по отношению к линиям перекрестия. Эти окулярные микрометры можно назвать микрометрами с косым крестом. Существуют, однако, окулярные микрометры, у которых подвижная пластина перемещается в направлении одной из линий перекрестия (микрометр с прямым крестом). При измерении изогнутости интерференционных полос (обычно в средней части поля зрения) одну из линий перекрестия выставляют вдоль полос и затем поочередно oвмeщaюt с наибольшим выступом и наинизшей впадиной, делая оба раза отсчеты показаний круговой шкалы барабана микрометренного винта. Разность этих двух отсчетов, выраженная в числе делений барабана (на круговой шкале 100 делений, цена деления = 0,01 мм), дает величину А в формуле (94). При этом целые обороты барабана, т. е. сотни делений его круговой шкалы, отсчитывают по миллиметровой шкале неподвижной пластины (цена ее деления /щ = = 1 мм).  [c.94]


Микроинтерферометр МИИ-5 представляет собой упрощенную конструкцию микроинтерферометра МИИ-4. Упрощение в основном заключается в отсутствии фотокамеры, интерференционных светофильтров, микрометренных перемещений стола и устройства для изменения ширины и направления интерференционных полос. В остальном его технические характеристики и способ применения совпадают с МИИ-4.  [c.95]

Однообъективный микроинтерферометр М И И - 9 имеет улучщенную контрастность интерференционной картины и некоторое упрощение конструкции при тех же технических характеристиках. Контрастность улучшена за счет упрощения интерференционной части, выполненной в виде микрообъектива, предложенного А. Н. Захарьевским и показанного на рис. 23. Многолинзовый объектив 4 объединен с пластинами 2 и 3 одинаковой толщины. В центральной части пластины 3 со стороны объектива нанесено плотным напылением круглое зеркало, а на обращенной к ней стороне пластины 2 нанесена полупрозрачная пленка.  [c.95]

Оптическая схема иммерсионно-репликового микроинтерферометра МИИ-10 практически совпадает со схемой микроинтерферо-метра МИИ-4 (см. рис, 22, а).  [c.96]

Многолучевая интерференция и многолучевой микроинтерферометр МИИ-И. Многолучевая интерференция возникает за счет многократного отражения когерентных пучков света в клинообраз-йой пластине по схеме Фабри и Перо (свет падает под углом <0 = 1-ьЗ ). При этом получение узких контрастных полос обусловливается тем, что при сложении N когерентных пучков образуется не по одному максимуму и минимуму освещенности (Как это имеет место при двухлучевой интерференции), а на М максимумов приходится Л —1 минимумов освещенности. Из макси-  [c.97]

Интерференционные измерения беспорядочных неровностей поверхности. Микропрофилометр МИИ-12. Рассмотренные выше двухлучевые и многолучевые микроинтерферометры предназначены для измерения неровностей поверхностей с преимущественным направлением следов обработки.  [c.99]

М и к р о и н т ерферометр МИИ - 15 (рис. 28) может быть использован для измерения высоты неровностей поверхностей малогабаритных деталей сложной конфигур м ш [41 ]. Диапазон измерений высоты неровностей 0,03—0,8 мкм. Общее увеличение 500 и 950 (объектив ОПИ-2, Р = 10 мм, А 0,5). Он имеет преимущество по сравнению с рассмотренными выше микроинтерферометрами — нижнее расположение предметного стола и большое предметное расстояние (около 4,5 мм).  [c.104]

Прибор построен по схеме двухобъективного микроинтерферометра. В качестве поверхности сравнения использована не плоскость, а сменные эталонные поверхности различной кривизны и отражательной способности (коэффициент отражения 0,04— 0,09). При контроле шероховатости поверхностей, имеющих близкий к эталонной поверхности радиус кривизны, интерференционные полосы прямолинейны и эквидистантны. Это особенно важно при контроле деталей малых размеров.  [c.104]

Наблюдаемое смещение Ь измеряют с помощью винтового окулярного микрометра—такого же, как при измерениях неровностей на микроинтерферометре. С2ущественное отличие измерений на двойных микроскопах МИС-11 и ПСС-2 по сравнению с измерениями на микроинтерферометрах МИИ-4 и др. заключается в необходимости предварительного определения цены деления круговой шкалы MOB при каждой паре сменных объективов в отдельности. Такая необходимость возникает в связи с тем, что увеличение у любого микроскопа зависит от оптической длины А его тубуса, что следует из формулы  [c.107]

Для снятия копий используют, в частности, кинопленку, растворимую в ацетоне, при высоте неровностей в пределах от 0,5 до 20 мкм. Способ применения кинопленки описан выше в разделе, посвященном иммерсионно-репликовому микроинтерферометру МИИ-10.  [c.121]

Методика упрощенной обработки профилограмм и фотографий оптических изображений профиля. Объектом обработки воспроизведения профиля на бумаге могут быть профилограммы, полученные на щуповом профилографе, или фотографии профиля, полученные на двойном микроскопе (приборе светового сечения), микроинтерферометре или растровом микроскопе.  [c.162]

При фотографировании на микроинтерферометре или двойном микроскопе используют высокочувствительную пленку и нужную длину профиля получают, снимая соседние участки поверхности образца, перемещаемого микрометром предметного стола. На двойном микроскопе для определения масштаба предварительно фотографируют щкалу объект-микрометра. Полученные фотографии интерференционной картины или светового сечения устанавливают на проекторе с увеличением 10 или 20 и вычерчивают профилограмму на миллиметровой кальке. Для определения масштаба профилограммы, полученной на микроинтерферометре, на одном из участков вычерчивают контур двух соседних полос. Вычерченные профилограммы обрабатывают теми же способами, что и профилограммы, записанные на щуповом профилографе.  [c.162]

Исследования проводили на технически чистых алюминии и меди, из которых вырезали образцы размерами 75X12X2 мм. На полированной поверхности образца алмазным индентором прибора ПМТ-3 наносили царапину глубиной около 0,5 мкм. После нанесения царапин образцы предварительно отжигали при температуре 0,6 Тпл и разрежении 5-10 мм рт. ст. Затем с помощью микроинтерферометра МИИ-4 определяли исходную глубину царапины и проводили взвешивание на аналитических весах.  [c.54]

Серийно изготовляемые промышленностью приборы (профило-метры модели 240, профилографы-пррфилометры модели 201 завода Калибр , микроинтерферометры МИИ-4, МИИ-5, МИИ-9, МИИ-10, двойные микроскопы акад. Линника В. П. — МИС-11) позволяют непосредственно измерять шероховатость поверхности или производить ее запись (профилограммы). Подробное описание их дано в специальных работах [11, 19, 32].  [c.47]


Смотреть страницы где упоминается термин Микроинтерферометры : [c.60]    [c.199]    [c.99]    [c.104]    [c.198]    [c.106]   
Справочник машиностроителя Том 2 (1955) -- [ c.251 ]

Справочник металлиста Том 2 Изд.2 (1965) -- [ c.720 ]

Точность и производственный контроль в машиностроении Справочник (1983) -- [ c.349 , c.351 , c.352 ]

Справочник технолога машиностроителя Том 2 (1972) -- [ c.517 ]

Гальванотехника справочник (1987) -- [ c.49 ]

Краткий справочник металлиста (0) -- [ c.341 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.251 ]



ПОИСК



Линника интерферометры Технические микроинтерферометры

Линника микроинтерферометры микроскопы двойные

Линника микроинтерферометры — Схем

Микроинтерферометр Линника

Микроинтерферометр Линника многолучевой — Принцип действия 1 кн. 71—72 — Схема

Микроинтерферометр Линника — Оптическая Схема 1 кн. 70 — Принцип действия 1 кн. 68, 70 — Работа

Микроинтерферометр Лшшика

Микроинтерферометр Спектральный диапазон

Микроинтерферометр многолучевой

Микроинтерферометр — Применение

Микроинтерферометр — Технические

Микроинтерферометр — Технические характеристики

Микроинтерферометры Линника — Технические характеристики

Микроинтерферометры для измерения шероховатости поверхности

Микроинтерферометры для контроля шеро

Микроинтерферометры для контроля шеро ховатости поверхности отливок

Схема оптическая микроинтерферометра



© 2025 Mash-xxl.info Реклама на сайте