Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы динамики систем со связями

Рассмотрим примеры, показывающие, что при действии только голономных связей теорема 8.4.1 о циклическом интеграле обобщает основные теоремы динамики системы.  [c.557]

При рассмотрении основных теорем динамики системы применялась аксиома об освобождении от связей. Если применять эту аксиому, то доказательство основных теорем динамики на основании принципа Даламбера — Лагранжа сводится к специальному выбору возможных перемещений. Например, для доказательства теоремы о движении центра инерции и теоремы об изменении количества движения достаточно положить, что все возможные перемещения бг равны бгр, т. е. предположить, что система перемещается поступательно.  [c.120]


Связь между основными динамическими величинами и силами действующими на систему дают общие теоремы динамики системы материальных точек.  [c.164]

Циклические интегралы являются некоторым обобщением основных теорем динамики системы (закона о сохранении движения центра масс и теоремы площадей). Рассматривая теорему с движении центра масс, заметим, что она имеет место, когда связи допускают поступательное перемещение всей системы. Пусть среди возможных перемещений системы имеется такое поступательное перемещение вдоль неподвижной оси х. Соответствующую этом> перемещению лагранжеву координату обозначим через Определяя возможные перемещения через независимые координаты Лагранжа, будем иметь  [c.352]

Очевидно, наложенные на систему голономные связи (1) допускают сдвиги системы тело + жидкость + точка как твердого целого вдоль неподвижных осей и вращение вокруг неподвижной оси О г. Согласно основным теоремам динамики [4], имеют место следующие соотношения  [c.467]

Теорема о движении центра инерции, как и все остальные теоремы динамики, является следствием основных законов механики Ньютона, дополненных для несвободной материальной системы аксиомой об освобождении от связей.  [c.42]

При движении системы эти задачи решаются в основном с помощью принципа Даламбера или общего уравнения динамики. Реакции внешних связей работающих механизмов можно определить также с помощью теоремы о движении центра масс.  [c.120]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]


Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

Изменению подвергся в основном первый раздел— Статика . Значительно расширены 2 Аксиомы статики и 3 Связи и реакции связей , заново написан 4 Определение равнодействующей двух сил, приложенных к точке . Переработаны 22 Приведение плоской системы сил к данному центру , а также глава VIII Центр тяжести . Глава Графостатика и параграф Определение усилий в стержнях ферм методом моментных точек из учебника исключены. Из раздела Динамика исключены два параграфа Дифференциальные уравнения точки и Движение материальной точки, брошенной под углом к горизонту , а также доказательство теоремы о движении центра инерции.  [c.3]

Как указывает подзаголовок этой книги, основным методом изложения избран генетический подход. Авторы стремятся объяснить генезис основных идей и понятий теории динамических систем с ударными взаимодействиями, а также продемонстрировать их естественность и эффективность. Ключевым моментом являются найденные недавно теоремы о предельном переходе, обосновывающие различные математические модели теории удара. Их суть заключается в следующем. Односторонняя связь, наложенная на систему, заменяется полем упругих и диссипативных сил. Затем коэффициенты упругости и вязкости некоторым согласованным способом устремляются к бесконечности. Доказывается, что движение такой свободной системы с фиксированными начальными данными стремится на каждом конечном промежутке времени к движению с ударами. При отсутствии диссипации энергии получаем упругий удар, а при надлежащем выборе диссипативной функции Рэлея (задающей структуру сил трения) можно получить в пределе модель Ньютона и более общий удар с вязким трением. Идея реализации связей с помощью предельного перехода в полных уравнениях динамики восходит к работам Клейна, Пранд-тля, Каратеодори и Куранта. Эти результаты позволяют, в частности, решить ряд новых задач об-устойчивости периодических движений с ударами, а также исследовать эволюцию биллиардных систем при неупругих столкновениях, когда имеется слабая диссипация энергии.  [c.4]

В дальнейшем пользуемся упрощенной моделью, в которой предполагается, что взаимодействие тела с преградой происходит в течение всего времени пребывания тела в области л >0. Ясно, что это время больше значения t из предыдущей задачи, и для моментов времени t>f получаем физически абсурдную картину стенка удерживает тело т, когда оно двил<ется от стенки в отрицательном направлении. Таким образом, вторая модель не претендует на физическое обоснование теории удара. Однако (какпоказано ниже) в результате некоторого предельного перехода она также приводит к модели удара с трением, изложенной во введении, а простота получающихся при этом формул позволяет развить эффективный метод решения ряда задач устойчивости движения в системах с неудерживающими связями (см. гл. 3). Идея метода состоит в следующем односторонние связи заменяются средой Кельвина — Фойгта, и в решениях полученных уравнений движения совершается предельный переход, при котором коэффициенты упругости и диссипации некоторым согласованным образом устремляются к бесконечности. В пределе получается движение системы с неупругим ударом, причем характеристики среды Кельвина —Фойгта определяются по заданному с самого начала коэффициенту восстановления. Такой подход позволяет при решении задач о движении систем с ударами использовать обычные дифференциальные уравнения динамики с дополнительными силами определенного вида. Основным результатом здесь являются теоремы  [c.41]



Смотреть главы в:

Теоретическая механика  -> Основные теоремы динамики систем со связями



ПОИСК



Основные Динамика

Основные теоремы

Основные теоремы динамики системы

Система основная

Система со связями

Системы Динамика

Теорема системы

Теоремы динамики

Теоремы динамики основные

Теоремы динамики системы



© 2025 Mash-xxl.info Реклама на сайте