Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни Деформации Частота собственных колебаний

Отсюда следует, что по изменению сопротивления АД можно определить деформацию е . По сравнению с емкостными датчиками, используемыми в мерном стержне Девиса, датчики сопротивления имеют преимущество, а именно с их помощью возможно непосредственное измерение деформации и отпадает необходимость в дифференцировании кривой и ( . Однако датчики сопротивления обладают следующими недостатками конечная длина датчика ограничивает его разрешающую способность при быстро изменяющихся деформациях датчик сопротивления измеряет деформацию на поверхности стержня. В последнее время при исследовании процесса распространения волн напряжений широко используются датчики, основанные на пьезоэлектрическом эффекте. В зависимости от конструкции пьезодатчиков можно получить высокие частоты собственных колебаний (до 60 кГц), что находится в соответствии с указанными требованиями. Датчик содержит чувствительный элемент (цилиндрический или кольцевой) из поляризованной пьезокерамики, инерционный груз и контактное устройство, соединяющее пьезоэлемент с регистрирующей аппаратурой. Пьезоэлемент датчика, как правило, изготовляется из титаната бария. Недостатком таких датчиков является непостоянство чувствительности, что требует тарировки каждого датчика отдельно. Как и датчик сопротивления, пьезодатчик измеряет среднее напряжение на площадке контакта, поэтому при проведении эксперимента, в котором спектр волн напряжений содержит компоненты высокой частоты, должна быть обеспечена высокая точность его выполнения. В отличие от датчиков сопротивления, которые позволяют производить измерения в одном направлении, датчики с титанатом бария одинаково чувствительны к напряжениям в направлении длины и радиальном направлении.  [c.26]


ВИЯМИ. К двухпролетным балкам при расчете обычно сводятся и симметричные трехпролетные балки. Но применение этого метода для расчета частот собственных колебаний балок с числом пролетов более двух практически сложно, так как трансцендентное уравнение частоты получается из определителя высокого порядка. В этом случае можно пользоваться методом деформаций, аналогичным широко используемому методу деформаций в статике сооружений. Метод деформаций впервые был применен к исследованию динамики рамных конструкций А. А. Белоусом Основные положения этого метода заключаются в следующем. Из балки или рамы вырезают стержень -к, соединяющий узлы / и й (фиг. 2. 20 слева). К концам этого стержня (фиг. 2. 20 справа) прикладывают внутренние усилия — изгибающие моменты перерезывающие силы Q и осевые силы Р. Затем составляют дифференциальное уравнение  [c.50]

Из формул (21.8) и (21.9) видно, что частота свободных колебаний системы возрастает с увеличением жесткости, или, что то же, с уменьшением статической деформации, вызываемой данным грузом. Легко убедиться, что груз, подвешенный к упругому стержню, обладает значительно более высокой собственной частотой колебания, чем тот же груз, подвешенный к податливой пружине.  [c.595]

В том случае, если длина волн изгиба соизмерима с размерами поперечного сечения стержня, для определения собственных частот поперечных колебаний стержней следует учитывать инерцию поворота сечения и действие перерезывающих сил. Поскольку действие перерезывающей силы вызывает искривление плоскости поперечного сечения, т. е. деформацию сдвига, то коэффициенты уравнения поперечных колебаний стержня будут зависеть не только от модуля упругости Е, но и от модуля сдвига G.  [c.139]

В третьем томе даны методы расчета стержней на устойчивость при упругих и пластических деформациях, приведены справочные сведения по определению критических нагрузок, частот и амплитуд собственных колебаний стержней, пластинок и оболочек под действием периодических и ударных нагрузок, случайных сил, потока газа.  [c.2]

Вследствие большой жесткости корпуса его собственные частоты достаточно высоки, но они должны быть тем не менее определены, так как частота возмущающей силы также значительна. Динамические деформации жесткого блока фундамента незначительны и практически вообще не вызывают дополнительных реакций в опорных конструкциях. Вследствие этого можно мысленно убрать последние и рассматривать собственные колебания корпуса как колебания свободного стержня. Такой стержень может совершать изгибные колебания в вертикальной и горизонтальной продольных плоскостях и крутильные вокруг горизонтальной продольной оси. Частоты изгибных колебаний получены по уравнению (432) подстановкой числовых значений /=6, 85 м  [c.357]


Если поместить никелевый стержень в переменное магнитное поле, то под действием периодического намагничивания он будет периодически изменять длину. Легко видеть, что в силу независимости деформации от направления поля в отсутствие подмагничивания частота колебаний стержня будет вдвое больше частоты изменения магнитного поля. Однако для получения возможно больших механических деформаций целесообразно ввести постоянное подмагничивание с тем, чтобы работать на наиболее крутом участке кривой деформации. Если постоянная составляющая магнитного поля не меньше, чем амплитуда переменной составляющей, то, помимо прочего, отпадает необходимость изменять знак магнитного поля достаточно менять лишь его-величину.. Деформация стержня происходит в, этом случае в такт с изменением поля. В случае настройки частоты возбуждающего поля в резонанс с собственной частотой упругих колебаний стержня амплитуда его колебаний оказывает-  [c.44]

При переходных режимах вынужденным колебаниям сопутствуют свободные, соответствующие начальным условиям. При мгновенном приложении нагрузки или при мгновенном изменении какой-либо из координат (например, при мгновенном перемещении одной из опор) в системе происходит удар. При этом, как и в системах с конечным число.м свободных координат, движение начинается в точке приложения мгновенного возмущения и лишь постепенно распространяется на остальные части системы. При этом образуется бегущая волна, как это поясняет рис. 8.25, на котором изображен заделанный одним конном стержень, к свободному концу которого внезапно приложена нагрузка. Здесь показана примерная упругая линия этого стержня в последовательные моменты времени. Скорость распространения волны деформации и ее форма (крутизна) зависят от параметров системы (от соотношения распределенных масс и упругости, иными словами, от соотношения собственных частот нормальных форм и времени приложения внешней нагрузки). Вследствие постепенности распространения деформации при ударных нагрузках в зоне их приложения возникают динамические напряжения, которые могут во много раз превысить статические, т. е. те, которые соответствуют весьма медленному нагружению системы. Поэтому появление ударных нагрузок в машинах крайне нежелательно.  [c.234]

В качестве примера падения некоторых собственных частот с увеличением частоты вращения могут служить колебания системы, показанной на рис. 6.34. Здесь две группы радиальных консольных стержней закреплены на вращающемся кольце (оболочке). Первая группа — стержни, ориентированные свободными концами в сторону действия центробежных сил, а вторая — в противоположную. Увеличение частоты вращения приводит к росту собственных частот системы, характеризующихся преобладанием изгибных деформаций стержней первой группы и, напротив, вызывает падение частот системы, которым свойственно преобладание изгибных колебаний стержней второй группы,  [c.116]

Выбор расчетной схемы, определение напряжений и деформаций. При выборе расчетной схемы детали машин обычно рассматривают как стержни, пластинки или оболочки. Из общего анализа работы конструкции оценивают условия закрепления (жесткое защемление, шарнирное опирание и т. и.). Краевые условия выбирают такими, чтобы отразить наиболее неблагоприятные условия закрепления детали, возможные при ее работе. Затем определяют напряжения и деформации в деталях машин. Часто оказывается необходимым определять собственные частоты колебаний, чтобы избежать резонансных режимов в рабочих условиях. Во многих случаях приходится учитывать возможность потери устойчивости конструкции и находить расчетным путем величины критических нагрузок.  [c.4]

В 1.9] (1970) разобраны свободные колебания стержня постоянного сечения с учетом деформаций полеречного сдвига. Для четырех тонов демонстрируется уменьшение собственной частоты, обусловленное сдвигом.  [c.91]

Уравнения (6.55) и (6.56) могут быть использованы прежде всего для динамического расчета колеблющихся систем, т. е. для определения динамических деформаций и напряжений в сечениях стержня при продольных или крутильных колебаниях. Эти уравнения можно также использовать для определения собственных частот колебаний однородных стержней при заданных краевых условиях. Так, например, для стержня с грузом на конце (пример 2) можно записать, взяв за начало верхний закрепленный конец  [c.269]


В. А. Барвинок и Г. М. Козлов определяли коэффициент Пуассона плазменных покрытий звуковым методом, путем возбуждения в образце стоячей волны первого тона [89]. Этот динамический способ выгодно отличается от статических испытаний, так как усиление переменного сигнала от тензорезисторов не составляет особых затруднений. В основе метода лежит особенность деформации стержня постоянного поперечного сечения при возбуждении в нем стоячей волны первого тона. Периодические продольные деформации растяжения я сжатия с частотой собственных колебаний стержня вызывают поперечные сокращения слоев материала, величина которых зависит от коэффициента Пуассона. Эти деформации измеряются тензорезисто-рами типа 2ФКПА с базой 5 мм и сопротивлением 200 Ом, которые наклеиваются на образец прямоугольного сечения. Схема для измерения коэффициента Пуассона состоит из двух мостов Уитстона, один из которых служит для определения продольной деформации, другой — для измерения поперечной деформации. Коэффициент Пуассона находится по формуле  [c.53]

Для этого необходимо было исследовать собственные частоты рамных конструкций. После того как впервые Гейгером были опубликованы формулы для собственных частот поперечных рам фундаментов, расчеты подобных рам были выполнены Элерсом и распространены также на случай стержней переменного сечения. Одновременно ряд статей и книга по общим вопросам колебаний стержневых систем были опубликованы Прагером. Автором настоящей книги были проведены исследования по выяснению сил, действующих на фундамент, с тем чтобы более точно установить расчетные нагрузки им было предложено рассматривать момент короткого замыкания как внезапно прикладываемую нагрузку, вводя в расчет соответственно его двойную величину. Далее было предложено величину центробежной силы считать равной утроенному весу вращающихся частей и статическую силу, эквивалентную ей, получать умножением этой величины на динамический коэффициент (зависящий от частоты) и на коэффициент усталости 2. Автором впервые было отмечено, что при определении частот собственных колебаний рам фундаментов, имеющих относительно короткие элементы со значительными размерами поперечных сечений, нельзя ограничиваться Зачетом только изгибных деформаций, а необходимо учитывать также сжатие колонн, так как при этом значения частот уменьшаются, как правило, на 20—30%-  [c.233]

Данное трансцендентное уравнение является уравнением устойчивости упругой системы по МГЭ. Корни уравнения устойчивости определяют спектр критических сил, число которых (теоретически) бесконечно. Чтобы не пропустить первой критической силы, нужно начинать анализ поведения определителя (4.6) с достаточно малых значений сжимающих сил Г. Рекомендуется начальное значение Г выбирать из интервала (1/100 - 1/1000)Гть, где Гщь - минимальная критическая сила стержней основной системы метода перемещений. Шаг изменения сжимающей силы рекомендуется выбирать равным (1/100 - 1/1000) интервала, на котором выполняется поиск критических сил. Изменение знака определителя (4.6) или равенство его нулю свидетельствует о прохождении критической силы. Таким образом, методика определения критических сил не отличается от методики определения частот собственных колебаний упругих систем. Здесь можно использовать программы на языках ГоЛгап и Разса1 примеров №13, №14 с соответствующим изменением обозначений переменных. В рамках принятых допущений МГЭ позволяет определять точный спектр собственных значений (частот или критических сил). Однако, линеаризация дифференциальных уравнений и краевых условий, неучет деформаций  [c.122]

Пусть геометрическая форма лопаток н их установка на диске таковы, что система имеет прямую поворотную симметрию, обладая одновременно плоскостью зеркальной симметрии, нормальной к оси системы. Тогда взаимодействие между изгибными колебаниями лопаток в окружном направлении и колебаниями жестко закрепленного диска, недеформируемого в своей срединной плоскости, отсутствует. В этих условиях параметр связи равен нулю, взаимная интерференция частотных функций отсутствует, пересечения их сохранятся, и эта часть спектря основной системы качественно совпадет с соответствующей частью объединенного спектра парциальных систем. В то же время, связанность семейств изгибных колебаний лопаток в направлении оси системы с изгибными колебаниями диска сохранится, четко проявится взаимная интерференция соответствующих парциальных частотных функций. Сохранится она и для семейства крутильных колебаний лопаток. На рис. 6.13 приведен спектр собственных частот упругого диска, несущего радиально расположенные консольные стержни постоянного (прямоугольного) сечения. Здесь хорошо видна деформация спектра при изменении ориентации главных осей сечения стержней относительно оси системы. При (3=0 и 90" система приобретает прямую поворотную симметрию. При Р = 0° изгибная податливость жестко закрепленного в центре и недеформируемого в своей плоскости диска не сказывается на частотах изгибных колебаний стержней в направлении их минимальной жесткости, и частотные функции имеют точки взаимного пересечения (точки А и В, рис. 6.13). Здес -, взаимодействие колебаний стержней и диска отсутствует (х = 0), однако наблюдается сильная связанность колебаний диска и стержней в направлении максимальной жесткости последних. При р = 90 наблюдаются сильная связан-  [c.97]

Минимальные собственные частоты колебаний стержня обычно связаны с его деформациями изгиба. Максимальные перемещения и деформации при гармонической внешней нагрузке часто возникают при поперечных колебаниях стержня. Дифференциальное уравнение поперечных колебаний стержня переменной жесткости EJ(x) и распредеяенной массы т х) без учета сдвигов поперечных сечений имеет вид (рис. 8,13.5)  [c.100]


J. Bardu i и G. Pisent [1.105] (1955) привели результаты опытного определения двух низших собственных частот изгибных колебаний стержней прямоугольного сечения. Результаты сравниваются с данными, вытекаюш,ими из теории Тимошенко. Стержни были изготовлены из стали и алюминия, а отношение высоты к длине варьировалось от 0.017 до 0.125. Полученные данные показали, что влияние деформаций сдвига и инерции вращения меньше, чем предсказывает теория.  [c.98]


Смотреть страницы где упоминается термин Стержни Деформации Частота собственных колебаний : [c.632]    [c.29]    [c.107]    [c.534]    [c.303]    [c.82]    [c.88]    [c.78]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.338 ]



ПОИСК



Колебания собственные

Стержни Деформации

Стержни Колебания собственные — Частот

Стержни Частота колебаний

Частота колебаний

Частота колебаний (частота)

Частота колебаний собственная

Частота собственная

Частоты собственных колебани



© 2025 Mash-xxl.info Реклама на сайте