Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентный конвективный теплообмен

ТУРБУЛЕНТНЫЙ КОНВЕКТИВНЫЙ ТЕПЛООБМЕН  [c.149]

Конвективный теплообмен — в общем случае процесс переноса тенла в жидкой или газообразной среде с неоднородным распределением скорости, температуры и концентрации, осуществляемый совместным действием двух механизмов перемещением макроскопических частей среды и тепловым движением микрочастиц. Первый из этих механизмов называется конвективным переносом, тогда как второй — молекулярным. В свою очередь применительно к теплообмену последний механизм подразделяется на теплопроводность и диффузию. Влияние конвективного переноса на теплообмен проявляется в зависимости от величины и направления скорости течения среды, от профиля скорости в потоке и от режима течения (ламинарного или турбулентного). Влияние молекулярного переноса на теплообмен проявляется в зависимости от состава и термодинамических и переносных свойств компонент газового потока. В технических приложениях иногда производят дальнейшее дифференцирование терминов и используют понятия теплоотдача и теплопередача . Под теплоотдачей подразумевают теплообмен между твердым телом и омывающей его жидкой или газообразной средой, теплопередачей — теплообмен между жидкими или газообразными средами, разделенными твердой стенкой.  [c.370]


Система (1.1). .. (1.7) замыкается, если известны критериальные уравнения для а и , определенные экспериментально. Для нестационарного теплообмена в трубах в [24] было показано, что при постоянном расходе теплоносителя изменение во времени температуры стенки и теплового потока влияет на коэффициент теплоотдачи благодаря изменению структуры турбулентного потока и наложению на квазистационарный конвективный теплообмен нестационарной теплопроводности.  [c.14]

Как известно, при турбулентном движении газа к сопротивлению трения и сопротивлению давления добавляется так называемое полезное сопротивление, связанное с турбулентным переносом молей из пограничного слоя к поверхности нагрева. Очевидно, что чем больше в общей сумме эта часть сопротивления, тем рациональнее организован конвективный теплообмен.  [c.45]

Однако имеющийся в литературе довольно обширный материал по конвективному теплообмену тел различной конфигурации носит разрозненный характер и трудно поддается обобщению из-за индивидуальных особенностей эксперимента (влияние характеристик турбулентности потоков, всевозможных неучтенных факторов, особенностей методики и др.).  [c.257]

КОНВЕКТИВНЫЙ ТЕПЛООБМЕН ПРИ ТУРБУЛЕНТНОМ РЕЖИМЕ ТЕЧЕНИЯ ТЕПЛОНОСИТЕЛЯ В КАНАЛАХ  [c.181]

Коэффициент теплопередачи соприкосновением а,, зависит ют многих факторов, что вызывает значительные трудности в его пределении. Так, например, известно, что характер движения среды может быть ламинарным или турбулентным. При ламинарном потоке теплопередача от среды к стенке незначительна н осуществляется в основном теплопроводностью. При турбулентном движении теплообмен между средой и стенкой (или наоборот) происходит интенсивнее, чем при ламинарном движении. Перенос тепла осуществляется конвективным путем благодаря вихревому движению среды. Но у стенки всегда имеется пограничный слой, в котором сохранятся ламинарное движение. Толщина этого слоя зависит от средней скорости потока и по мере его увеличения уменьшается.  [c.31]

Конвективный теплообмен при турбулентном движении больше, чем при ламинарном вследствие большей интенсивности молярного теплопереноса и переноса теплоты теплопроводностью. Процессы конвективного теплообмена между газовой или жидкостной средой и твердыми телами происходят в так называемом пограничном (прилегаемом) слое среды. Существуют понятия гидродинамического и теплового пограничного слоя.  [c.13]


Как показано в работе [9], внешняя турбулентность влияет только на два первых ряда пучка. Поэтому предлагаемая поверхность и состоит из двухрядных наклонных пучков. Указанные пучки устанавливаются в непосредственной близости от топки, на выходе из которой турбулентность резко повышена. (Ти=30 40 %). Кроме того, после поворота потока в конвективную шахту турбулентность также повышается. Эта повышенная турбулентность интенсифицирует теплообмен в двухрядных пучках и снижает сопротивление в них. Внешняя турбулентность естественно затухает, однако относительная длина канала невелика (несколько калибров ширины шахты), так что эффект влияния турбулентности будет ощутим.  [c.55]

Большое значение в технике приобрели процессы теплообмена в движущихся средах. Как известно, течение любой жидкости или газа может быть разделено иа принципиально различные области ламинарного и турбулентного течения. Теплообмен при ламинарном и турбулентном течениях имеет различный Характер. Теплообмен в движущейся среде (жидкость или газ) представляет собой конвективный теплообмен, или. короче, конвекцию. При этом перенос тепла осуществляется путем перемещения объемов жидкости или газа, а следовательно, этот вид теплообмена неразрывно связан с переносом самой среды. Обычно при технических расчетах теплообмен между потоком жидкости, газа и поверхностью твердого тела называют конвективной теплоотдачей. Различают свободную (гравитационную) и вынужденную конвекции.  [c.8]

Конвективный теплообмен в значительной степени зависит от природы и режима движения жидкости. При ламинарном режиме течения (см. п. 2.3) отсутствует перемешивание отдельных слоев жидкости. Вследствие этого передача тепла от слоя к слою жидкости происходит только за счет теплопроводности. При турбулентном течении пульсации скорости вызывают перенос частиц жидкости в направлении,перпендикулярном к направлению течения и к стенке вместе с частицами жидкости благодаря перемешиванию слоев переносится и теплота. В результате интенсивность теплообмена  [c.58]

Приведенный выше анализ дает основание полагать, что процесс конвективного теплообмена между поверхностью и слоем крупных частиц происходит при турбулентном течении газа с высокой степенью турбулентности. При этом частицы, находящиеся у теплообменной поверхности, играют роль турбулизатора. Как и в [73, 89], принято, что формирование пограничного слоя у поверхности происходит заново после каждой частицы. Однако в отличие от [73, 89] средний коэффициент теплообмена определяется по аналогии со случаем течения вдоль пластины при турбулентном пограничном слое, т. е. по уравнению  [c.93]

Полагают, что выведенные в 4-3 дифференциальные уравнения конвективного теплообмена справедливы для отдельных струек пульса-ционного движения. Эти уравнения можно записать в осредненных значениях скорости и температуры, если произвести замену / = Wx = Wx+w x, wy — wy + w y и т. д. Произведя некоторые преобразования и выдвинув дополнительные гипотезы, можно получить систему дифференциальных уравнений, описывающих в первом приближении осред-ненное турбулентное течение и теплообмен. В достаточно строгой постановке этот вопрос до конца не разрешен.  [c.144]

Течение теплоносителей в активной зоне ядерных реакторов, теплообменников, парогенераторов практически всегда носит турбулентный характер. Поэтому ниже рассматривается теплообмен лишь при турбулентном течении жидкостей и газов в каналах различной формы, а также теплообмен при продольном и поперечном обтекании пучков труб или других поверхностей. Разбираются случаи вынужденной, свободной и смешанной конвекции. Интенсивность конвективной теплоотдачи жидкостей и газов при турбулентном течении определяется коэффициентом теплоотдачи, который, как правило, относится к разнице температур стенки и средней температуры среды а = — tf).  [c.51]

Зависимость теплообмена от числа Re при неравновесных химических реакциях в теплоносителе носит более сложный характер по сравнению с процессами в инертных потоках, С увеличением числа Рейнольдса растет конвективный перенос тепла и массы по сечению потока, снижается толщина пограничного слоя, его термическое и диффузионное сопротивление, изменяются профили температур и концентраций, а следовательно, и соотношение тепловых потоков, передаваемых различными путями. В настоящее время отсутствуют экспериментальные данные по профилям концентраций компонентов в турбулентных неравновесных потоках четырех-окиси азота, поэтому при рассмотрении влияния числа Re на профиль С4 по поперечному сечению потока, что, согласно (3.20), определяет величину вклада химических реакций в теплообмен, могут быть использованы лишь расчетные данные. На рис. 3.3 изображены графики из [3.38], характеризующие изменение С4 и эффек-  [c.68]


Определенные особенности имеет расчет трения и теплообмена на шероховатой поверхности. Шероховатость поверхности может ускорить переход к турбулентному режиму течения и привести к увеличению поверхностного трения и интенсификации конвективного теплообмена. В переходной области теплообмен также усиливается. При анализе трения, введя так называемую песочную шероховатость, удалось исключить из рассмотрения форму элементов шероховатости. Отношение высоты эквивалентной песочной шероховатости к толщине ламинарного подслоя является параметром, характеризующим степень ее влияния на величину трения. Если высота шероховатости меньше толщины подслоя, она не влияет на трение. В этом случае поверхность считается гладкой. Когда высота шероховатости значительно превышает толщину ламинарного подслоя, определяющим становится сопротивление формы шероховатости при этом перестает зависеть от числа Re и определяется только высотой шероховатости. В промежуточной области зависит как от высоты шероховатости /г, так и от Re. С увеличением местного числа Маха влияние шероховатости на трение уменьшается.  [c.50]

Аналитическое исследование радиационно-конвективного теплообмена в кольцевом канале при турбулентном режиме течения было сравнительно недавно предпринято в Л. 441]. Однако автору пришлось привлечь для решения задачи результаты экспериментальных исследований по определению профиля скоростей в кольцевом канале и коэффициентов турбулентной диффузии в потоке. Кроме того, принятый метод решения предполагает малые значения оптических плотностей потока и доминирующее влияние теплопроводности по сравнению с радиационным теплообменом в среде.  [c.401]

Влияние магнитного поля на теплообмен при турбулентном течении связано с двумя гидродинамическими эффектами эффектом гашения турбулентных пульсаций и эффектом Гартмана. Продольное поле вызывает гашение турбулентных пульсаций и переход от более заполненного турбулентного профиля к профилю, менее заполненному, приближающемуся с увеличением числа Гартмана к параболическому. Оба эффекта снижают интенсивность теплообмена. Причем это снижение будет заметным только в определенной области чисел Рейнольдса. В области малых чисел Рейнольдса главную роль будет играть молекулярная теплопроводность конвективный механизм дает незначительный вклад в теплообмен. В области больших чисел Рейнольдса отношение электромагнитных сил к инерционным уменьшается, что приводит к уменьшению влияния поля на гидродинамику и теплообмен. Результаты исследования тепло-  [c.78]

Рассмотрим некоторые качественные стороны воздействия магнитного поля на теплообмен в этом случае. При вступлении потока с развитой турбулентностью в область поля, как известно, происходят два основных процесса, изменяющих характер течения и, в этой связи, процессы конвективного тепло-  [c.83]

В данном, втором, издании этой монографии ряд разделов существенно переработан и расширен. Основное внимание обращено на проблемы конвективного теплообмена и, особенно, теплообмена в турбулентных потоках. Несколько расширен раздел о теплопроводности в твердых телах. О теплообмене излучением даются лишь самые необходимые сведения.  [c.3]

Диффузией называется самопроизвольный перенос вещества из области с большей его концентрацией в область с меньшей концентрацией. Аналогично теплообмену перенос вещества (массообмен) может осуществляться как за счет молекулярной проводимости, так и за счет молярных, конвективных переносов. Одной из форм молярного переноса вещества является турбулентная диффузия в газах и жидкостях.  [c.417]

Основным прогрессивным путем теоретического анализа конвективного теплообмена в турбулентном потоке в условиях внутренней задачи остается в настоящее время гидродинамическая теория теплообмена, опирающаяся на идеи Рейнольдса об аналогии между теплообменом и сопротивлением. В этой связи физически обоснованное представление  [c.223]

При постоянном расходе теплоносителя в канале G = = onst) изменение во времени коэффициента теплоотдачи а зависит от изменения температуры стенки Тс или плотности теплового потока < с. Изменение во времени Тс или q влияет на а через изменение турбулентной структуры потока и из-за наложения на квазистационарный конвективный теплообмен нестационарной теплопроводности. Теоретические исследования, выполненные, как правило, в предположении квазиста-ционарной структуры потока, учитывают только влияние нестационарной теплопроводности. В этом случае при нагревании газа и возрастании температуры стенки (ЭГс/Эг > 0) коэффициент К(х = (Nu/Nug) >1 (Nu и NUg — нестационарное и квазистационарное значения чисел Нуссельта), а при Э Гр/Эг < < о коэффициент К(ц < 1. Изменение Тс влияет на значения а вследствие перестройки профиля температур. Так как поток турбулентный, то изменение температурного поля в ядре потока мало влияет на а, существенно лишь его влияние в пристенной области. Тепловой импульс от стенки распространяется в поток со скоростью, пропорциональной (а + 6 ) /у (где а — коэффициент температуропроводности — коэффициент турбулентной температуропроводности у — расстояние от стенки). Приведенные в работах [24, 26] оценки показали, что  [c.29]

По аналогии с методами обобщения опытных данных по нестационарному конвективному теплообмену в каналг1х при турбулентном режиме течения [24] можно полагать, что в общем случае экспериментальные данные по нестационарному коэффициенту перемешивания можно представить в виде следующей критериальной зависимости  [c.151]

Из рис. 4.3 видно, что режим развитого поверхностного кипения, характеризующийся а данном случае слабой зависимостью температуры стенки от величины подводимого теплового потока [621, у внутренней образующей трубы наступает при меньших значениях плотностей тепловых потоков, чем у наружной. Это объясняется более высокой интенсивностью конвективной теплоотдачи у наружной образующей змеевика под воздействием вторичных макровихревых течений Можно также предположить, что дополнительным фактором, способствующим интенсификации теплообмена у наружной образующей, служит возникающее при меньших значениях q пузырьковое поверхностное кипение у внутренней образующей трубки змеевика. Турбулентные возмущения потока, возникающие при кипении у внутренней образующей, распространяются по поперечному сечению потока и оказывают интенсифицирующее воздействие на конвективный теплообмен у наружной образующей. При дальнейшем увеличении подводимого теплового потока с развитием поверхностного кипения по всему периметру поперечного сечения трубки разверка температуры стенки уменьшается и может исчезнуть вообще. В качественном отношении влияние режимных параметров на начало поверхностного кипения в змеевике такое же, как и в прямых трубах. В частности, данные, полученные авторами, согласуются с результатами работы [101 и показывают, что с увеличением массовой скорости и степени недогрева развитое пузырьковое кипение начинается при больших значениях плотностей тепловых потоков.  [c.55]


Теплоотдача представляет собой чрезвычайно сложный процесс, в связи с чем она является функцией большого числа различных факторов, к которым можно отнести характер конвекции X, т. е. свободная или вынужденная конвекция режим течения жидкости Р, т. е. имеет место параллельно-струйчатое движение теплоносителя без перемешивания (ламинарное течение) или в теплоносителе наблюдаются вихри, перемещающие жидкость не только в направлении движения, но и в поперечном направлении (турбулентное течение) скорость движения теплоносителя ш направление теплового потока (нагревание или охлажденпе) Н коэффициент теплопроводности Я, теплоемкость Ср, плотность о, вязкость ц, т. е. физические свойства теплоносителя температуру теплоносителя и поверхности стенки / и их разность А/, называемую температурным напором поверхность стенки Г, омываемую теплоносителем форму стенки Ф ее размеры 1-1, 4, /з, и другие факторы. Таким образом, конвективный теплообмен неразрывно связан с большим числом различных факторов  [c.280]

Конвективный теплообмен в услсви ях переходного режима течения теплопосителя в кан але подчиняется иной закономерности, чем в условиях устойчивого ламинарного ил,и турбулентного режимов течения.  [c.184]

Механизм раоп ространени я тепла в капельных жидкостях и газах при конвективном теплообмене условиях вынужденного турбулентного течентя теплоносителя оказывается аналогичным -механизму переноса количества движения отдельными вихревыми частицами потока.  [c.202]

В 1.2 показано, что неставдюнарная теплоотдача при турбулентном течении в каналах с постоянным расходом отличается от квазистациоиарной главным образом за счет наложения на конвективный теплообмен нестационарной теплопроводности и изменения порождения турбулентности.  [c.101]

Один из наиболее изученных ныне способов интенсификации теплообмена в охлаждающем тракте — применение искусственной шероховатости поверхности тракта. Физические основы этого метода следующие. Известно, что в конвективном теплообмене между стенкой и охлаждающим компонентом (так же как и между ПС и стенкой) участвует лишь тонкий слой потока -пограничный слой. Причем, интенсивность теплообмена в значительной степени зависит от характера движения в пограничном слое. При ламинарном пограничном слое перенос теплоты осуществляется главным образом теплопроводностью и теплообмен существенно менее интенсивен, чем при турбулетном по-граничном слое, в котором теплота йереносится более мощным механизмом — турбулентным обменом. Однако хотя в турбулетном пограничном слое теплоперенос и усиливается, он все же сильно ограничивается образованием непосредственно на стенке ламинарного подслоя, в котором теплота передается более слабым механизмом — теплопроводностью.  [c.82]

В ракетном двигателе осповнуЕО роль играет конвективный теплообмен. Частицы газа в своем движении вдоль стенки передают ей часть имеющейся у иих энергии. Но в конвективном обмене участвует, понятно, не весь объем газа, а только слой, расположенный Е1епосредственно у стенки. Его называют пограничным слоем (рис. 4.16). Характер изменения температуры в пограничном слое, его структура и толщина зависят от вязкости потока и скорости его течения — вообще, от меры турбулентности. Но не углубляясь в этот весьма специальный вопрос, будем рассматривать пограничный слой лишь как некоторую передаточную ступень, как некоторый фильтр для теплового потока, поступающего от газа к стенке.  [c.188]

При наличии химических реакций в пограничном слое необходимо учитывать дополнительное выделение и поглощение тепла внутри слоя. В этих случаях кроме совокупности уравнений пограничного слоя нужно рассматривать уравнения, определяющие условия протекания химических реакций. Рассматривая движение смеси газов в целом, нужно иметь в виду, что физические параметры смеси р, fi, %, D, Ср будут зависеть от состава, давления и температуры смеси. Определение этих параметров (особенно характеризующих переносные свойства газовых смесей) связано с некоторыми предположениями, которые делаются заданием потенциалов взаимодействия при столкновении частиц различных типов. Ряд предположений приходится делать при задании кннетики химических реакций. ГТоэтому расчеты (даже в случае ламинарного режима течения в пограничном слое) должны обязательно сопоставляться с экспериментальными данными. Кроме того, при высоких температурах появляется еще выделение и поглощение тепла путем излучения. Влияние излучения в воздухе растет при увеличении температуры и особенно существенно при скоростях полета более 10 км/с. Во многих случаях влияние излучения иа конвективный теплообмен невелико, при этом лучистый и конвективный потоки могут рассчитываться независимо. В главе весь анализ приводится для ламинарного пограничного слоя, одиако полученные выводы могут использоваться и для расчета турбулентного пограничного слоя.  [c.176]

Одним из факторов, влияющих на конвективный теплообмен, является состояние поверхности. В ряде практически интересных случаев поверхность, участвующая в конвективном теплообмене, не является абсолютно гладкой. Появление икроховатости может быть следствием механической обработки поверхности, коррозии материала, отложения солей, разрушения поверхности под действием высокотемператур1юго газового потока. В настоящей главе рассматривается влияние на теплообмен шероховатости, равномерно распределенной по поверхности. Рассмотрим вначале влияние шероховатости на переход ламинарной формы течения в турбулентную. При вынужденном движении среды переход ламинарного течения в турбулентное определяется величиной критерия Рейнольдса, который характеризует соотношение в рассматриваемом потоке сил инерции и трения. Если величина критерия Ке мала, то это означает, что малы силы инерции по сравнению с силами трения, возникающие в пограничном слое возмущения гасятся силами трения и течение в нем остается ламинарным.  [c.371]

При турбулентном режиме движения жидкости возникает интенсивное перемешивание, увеличивающее конвективный теплообмен. Теплота передается теплопроводностью только в тонком ламинарном подслое, а затем в ядро потока за счет турбулентной дк ффузии. При увеличении средней скорости движения интенсивность турбулентного перемешивания растет, что ведет к уменьшению толщины пограничного слоя, уменьшению термического сог ротивления и интенсификации теплообмена.  [c.497]

К сожалению, в [197] не дано полное качественное разъяснение физической стороны явления. К числу жестких следует отнести допущение о пренебрежении осевой составляющей скорости. Для расчета профиля температуры необходимо знать характер распределения окружной скорости, который зависит не только от термодинамических параметров потока газа на входе в камеру энергоразделения вихревой трубы, но и от ее геометрии, а также от давления среды, в которую происходит истечение. Остановимся менее подробно на теоретических концепциях Шепе-ра [255] и А.И. Гуляева [59—61], рассматривавших процесс энергоразделения как результат обмена энергией в противоточном теплообменнике класса труба в трубе. Сохранив в принципе основные идеи представителей третьей фуппы гипотез, Шепер рассматривал ламинарный теплообмен. А.И. Гуляев, сохранив основные моменты физической картины Шепера, заменил лишь конвективно-пленочный коэффициент теплопередачи турбулентным обменом. Эти рассуждения не выдерживают критики по первому критерию оправдания, так как предполагают фадиент статической температуры, направленный от оси к периферии, что противоречит экспериментальным данным [34—40, 112, 116]. Однако опыты Шепера [255] и А.И. Гуляева [59-61] позволили сделать некоторые достаточно важные обобщения по макроструктуре потоков в камерах энергоразделения вихревых труб  [c.167]


Обобш,еняые уравнения, полученные на основании обработки экспериментальных данных, широко распространены в литературе по теплообмену. Такие уравнения получены для ламинарного и турбулентного течения в каналах самой разнообразной формы в различных диапазонах изменения числа Прандтля. Настоящая книга посвящена в основном рассмотрению аналитических решений задач конвективного тепло- и массообмена. Глубокое понимание этих решений, по нашему мнению, является надежной основой правильного и разумного примене-  [c.225]


Смотреть страницы где упоминается термин Турбулентный конвективный теплообмен : [c.71]    [c.182]    [c.41]    [c.110]    [c.180]    [c.111]    [c.162]    [c.10]    [c.399]    [c.468]    [c.222]    [c.227]   
Смотреть главы в:

Основы теплопередачи в авиационной и ракетно-космической технике  -> Турбулентный конвективный теплообмен



ПОИСК



Конвективный теплообмен

Конвективный теплообмен при турбулентном режиме течения теплоносителя в каналах

Турбулентность теплообмен



© 2025 Mash-xxl.info Реклама на сайте