Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационный принцип в электродинамике

Вариационный принцип в электродинамике  [c.119]

Уже Пуанкаре в своей классической работе О динамике электрона подошел вплотную к установлению взаимосвязи Р-симметрия — сохранение , так как он сформулировал инвариантный вариационный принцип для электродинамики и установил ли-групповой характер преобразований  [c.242]

Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]


На место единой физической картины мира была поставлена объединенная картина, в которой отдельные части связывались вариационным принципом, но в каждой из этих частей требовалось как для их описания и объяснения, так и для применения вариационного принципа введение хотя и механически толкуемых, но не сводимых и не связанных между собой понятий и представлений (например, локализация энергии в электродинамике и вероятность в термодинамике). Никакое прибавление слова динамика к названию отдельных частей физики не могло, конечно, ничего изменить в этом смысле.  [c.864]

Другой общий подход к построению нелинейной механики сплошной среды, с привлечением основ термодинамики и электродинамики, развивается Л. И, Седовым. В основе этого подхода лежит введение дополнительных физических параметров в качестве искомых характеристик состояния и свойств среды. Седов дополнил соответствующий математический аппарат тензорного анализа, предложил общий вариационный принцип для исследования уравнений задачи и подошел (совместно со своими учениками) к построению новых моделей сплошной среды.  [c.306]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]

Л. И. Седову (1962) принадлежит общий термодинамический и кинематический анализ основных моделей сплошной среды, наиболее общая формулировка ассоциированного закона течения для упрочняющегося тела при произвольном числе параметров, ответственных за предысторию нагружения. В 1965 г. Л. И. Седов предложил вариационный метод построения математических моделей сплошной среды и указал общую форму соответствующего принципа, применимую не только в классической механике, но также и в релятивистской механике сплошных сред и электродинамике. В рамках этого метода установлены связи теории пластичности и континуальной теории дислокаций.  [c.393]


Лоренца (здесь Р-группа — это грунпа Пуанкаре или неоднородная группа Лоренца). Пуанкаре на основе доказанной им Р-инвариантности электродинамического действия имел все необходимое, чтобы установить взаимосвязь Р-симметрия — сохранение . Через несколько лет после этого Пданк, Минковский, Борн и др. широко использовали Р-инвариантные вариационные принципы в релятивистской механике, электродинамике и т. д., так что уже в самом начале возникновения СТО три основных компонента взаимосвязи симметрия — сохранение были выявлены. Но понимание ее как фундаментальной общефизической закономерности отсутствовало, а основные законы сохранения электродинамики СТО были получены непосредственным интегрированием или при помощи различных искусственных приемов. Поэтому наиболее вероятной была возможность установления взаимосвязи Р-симметрия — сохранение при систематической релятивизации еще не релятивизованных физических теорий в виде некоторого формальновычислительного способа получения законов сохранения.  [c.243]

Именно эта возможность и была реализована в 1911 г. Г. Герглотцем , который принял активное участие в разработке релятивистской механики сплошной среды и на этом пути впервые явно получил взаимосвязь Р-сим-метрия — сохранение . Вариационная структура уравнений механики сплошной среды была известна и широко использовалась, начиная с середины XIX в. (Гельмгольц, Кирхгоф, Рэлей, А. Вальтер и др.) . Вариационные принципы в релятивистской форме за пределами электродинамики были сформулированы и широко использованы, прежде всего, Планком, а затем Минковским и др. (механика точки и системы, термодинамика и т. д. ). Поэтому построение релятивистской механики сплошной среды естественно было начать с Р-инвариантного вариационного принципа, переходящего в нерелятивистском случае в соответствующий вариационный принцип классической механики. Герглотц начинает с описания среды в переменных Лагранжа, т. е. рассматривая координаты частиц среды и характеристики движения как функции начальных координат и времени t. Элемент мировой линии двух соседних мировых точек при таком описании выражается посредством квадратичной формы дифференциалов начальных координат и собственного времени = i x  [c.243]

Класснч. электродинамика не противоречит возможности существования маги, зарядов. Однако, в отличие от поля электрнч. зарядов и токов, иоле, создаваемое магн. зарядами, не может бглть описано с помощью нектор-нотенциала ((х=0, 1, 2, 3) непрерывного 110 всем пространстве. Поэтому при наличии магы. зарядов ур-иия движения заряж. частнц не выводятся из вариационного наименьшего действия принципа. В классич. электродипамике это не приводит к принципиальным трудностям (хотя п делает теорию несколько менее красивой), ио квантовую динамику невозможно сформулировать вне рамок гамильтонова формализма или лагранжева формализма, основанных на вариац. принципе.  [c.687]

Л. И. Седов сформулировал вариационный принцип, с помощью которого находятся инвариантные уравнения движения, уравнения состояния (модель) и различные дополнительные условия (краевые, начальные условия на поверхностях скачков и пр.). Этот принцип дал возможность построить класс моделей сплошных сред, включающий многие известные модели, а также другие модели, учитывающие вязкие, упругие, пластические эффекты, движенйе дислокаций. Систематическое изложение современной механики сплошной среды с привлечением термодинамики, электродинамики, химической кинетики дано в книгах Л. И. Седова  [c.278]

Идея написания настоящей книги возникла на семинаре А. А. Андронова в 1949/50 г. в связи с рассмотрением на нем вопросов составления уравнений движения разнообразных технических систем. Это рассмотрение помимо научных целей имело в виду цели преподавания, о чем А. А. Андронов неоднократно напоминал участникам семинара. Дискутировались понятия направленных связей и сервосвязей, способы составления уравнений электрических цепей, тензорные формы уравнений движения, уравнения движения механических систем, вариационные принципы теории поля и электродинамики, вопросы составления уравнений движения электрических машин и многие другие. По этим вопросам выступали с докладами Н. А. Железцов, М. Л. Левин, А. В. Гапонов, Ю. И. Неймарк,  [c.5]


Общая черта уравнений классической физики состоит в том, что все опи могут быть выведены из вариационных принципов. Принцип Ферма в оптике (1657 г.) и принцип Мопсртюи в механике (1744 г.) служат примерами наиболее ранних вариационных принципов. Из соответствующих вариационных принципов можно также получить уравнения упругости, гидродинамики и электродинамики.  [c.663]

Другое важное преимущество вариационного принципа (32.2) состоит в том, что его нетрудно распространить на системы, имеющие бесконечно большое число степеней свободы, т. е. на системы, не являющиеся чисто механическими, например, на упругие среды, электромагнитные поля и поля элементарных частиц. Другими словами, почти во всех областях физики можно сформулировать вариационные принципы, аналогичные принципу (32.2) и позволяющие получать соответствующие им уравнения движения (например, уравнения Максвелла в классической электродинамике, уравнение Шредингера в квантовой механйке и т. д.). Различие в формулировках принципа экстремального действия в указанных разделах физики сводится лишь к различию в определении соответствующих функций Лагранжа. Возможность формулировки принципа экстремального действия в различных разделах физики свидетельствует о единстве материального мира и общности форм проявления различных физических процессов.  [c.186]


Смотреть главы в:

Теория упругости Изд.2  -> Вариационный принцип в электродинамике



ПОИСК



Вывод уравнений электродинамики из вариационного принципа

Принцип вариационный

Ряд вариационный

Электродинамика



© 2025 Mash-xxl.info Реклама на сайте