Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбюраторный процесс

Фнг. 149. Внешние характеристики при непосредственном впрыске (индекс форс ) и при работе по карбюраторному процессу (индекс карб ).  [c.115]

Карбюраторный процесс ведется только в случаях острого недостатка или полного отсутствия чугуна в заводах. Углерод, играющий важную роль в процессах плавления и кипения, вводится в виде карбюризаторов — антрацита, кокса каменноугольного, торфяного и нефтяного из расчета 1—2 части карбюризатора взамен 1 весовой части углерода чугуна. Недостаток марганца восполняется ферромарганцем или марганцевой рудой.  [c.58]


Карбюраторный процесс ведется исключительно на стальном ломе, при этом чугун заменяется антрацитом, каменноугольным, нефтяным или торфяным коксом. Он применяется в случаях острого недостатка или полного отсутствия чугуна. Производительность печей при таком способе снижается по сравнению с обычным на 25— 40%, а металл получается низкого качества.  [c.38]

При проведении плавки в мартеновских и электродуговых печах в условиях недостатка чугуна содержание углерода в металлической шихте оказывается недостаточным для осуществления процесса. Тогда вместе с металлической шихтой в печь загружают углеродсодержащие материалы графит в виде электродного боя, кокс (угольный или нефтяной), древесный или каменный уголь и т.п. Такой процесс называют скрап-угольным или карбюраторным процессом.  [c.167]

I — скрап-рудный процесс 2 — скрап-процесс Л — скрап-угольный (карбюраторный) процесс  [c.405]

При карбюраторном процессе важно завалку шихты производить таким образом, чтобы предотвратить бесполезное прямое сгорание карбюратора в окислительной атмосфере печи. С этой целью карбюратор загружают после завалки части скрапа (на слой скрапа) и быстро прикрывают его новым слоем лома.  [c.437]

Теоретически карбюраторный процесс можно вести на одном (100%) ломе. Однако практически этого не наблюдается, так как даже при отсутствии передельного чугуна в шихту обычно попадает чугунный бой в количестве не менее 10%. Поэтому в самых тяжелых условиях работы содержание чугуна в шихте обычно составляет 10— 15%, а чаше всего 20—25% и более.  [c.437]

При нормальном карбюраторном процессе расход электродного боя обычно составляет 1,0—1,5%, а других материалов больше кокса 1,5—2%, древесного угля 2,5—3%.  [c.437]

Карбюраторный процесс отличается от обычного скрап-процесса еще тем, что в период плавления образуется меньшее количество шлака ввиду меньшего содержания в металлической шихте кремния. Однако шлак в карбюраторном процессе обладает большей склонностью к пенообразованию и затрудняет нагрев металла. К тому же металл имеет меньшее содержание углерода и выше температуру плавления. Поэтому период плавления при карбюраторном процессе является более продолжительным, что приводит к перегреву рабочего пространства печи и повышенному его износу. В период довод-  [c.437]

Итак, карбюраторный процесс является самым нерациональным вариантом мартеновского процесса, к которому нужно прибегать лишь в исключительных случаях, когда нет возможности реализовать другие варианты, т. е. нет чугуна или его не хватает.  [c.438]

Промежуточное звено 3 сложной реакции наиболее продолжительно по времени. В четырехтактном двигателе процесс расширения длится от 40 до 5 мкс. В определенный момент такта расширения происходит прекращение процесса окисления СО на промежуточной стадии, при этом даже в случае избытка кислорода в продуктах сгорания будет содержаться окись углерода в концентрациях, измеряемых несколькими десятыми долями процента по объему. В ОГ карбюраторного двигателя возможны концентрации СО до 10% по объему, ому способствует недостаток кислорода при переобогащении топливовоздушной смеси. Максимальные концентрации СО в камере сгорания дизеля могут достигать нескольких процентов но объему, но в ОГ их не более 0,2%. Это объясняется интенсивным догоранием СО в такте расширения и выпуска при общем избытке воздуха (кислорода),  [c.10]


Карбюраторный двигатель внутреннего сгорания работает по циклу, состоящему из четырех последовательно происходящих процессов адиабатного сжатия из состояния А в состояние В, изохорного перехода из состояния В в состояние С в результате нагревания воздуха при сжигании горючей смеси, адиабатного расширения из состояния С в состояние D и изохорного перехода из состояния D в исходное состояние А (см. рис. 117). Вычислите КПД двигателя для случая, если бы воздух был идеальным одноатомным газом при значениях температуры в состояниях А, В, С и D соответственно Т -= ==300 К, Тв -524 К, Тс = 786 К и Гд = 450 К.  [c.123]

В конце процесса сжатия газа в цилиндре карбюраторного двигателя внутреннего сгорания давление было 9-10 Па, в конце процесса сгорания топлива стало равным 35-10 Па. Определите температуру газа в цилиндре в конце процесса сгорания топлива. Температура в конце процесса сжатия равна 400 °С. Поршень в процессе сгорания топлива можно считать неподвижным.  [c.125]

Идеализируя рабочий цикл как двухтактных, так и четырехтактных карбюраторных двигателей, т. е. двигателей быстрого сгорания, получают термодинамический цикл, называемый часто циклом Отто (рис. 8.4,а). В этом цикле процесс сжатия рабочей смеси происходит по адиабате /—2. Изохора 2—3 соответствует горению топлива, воспламененного от электрической искры, и подводу теплоты рь Рабочий ход, осуществляемый при адиабатном расширении продуктов сгорания, изображен линией 3—4. Отвод теплоты Ц2 осуществляется по изо-хоре 4—/, соответствующей в четырехтактных двигате-  [c.197]

В книге рассмотрены теория двигателей внутреннего сгорания, системы питания, наддува, пуска, охлаждения и смазки, кинематика, динамика и уравновешивание двигателей. Уделено внимание рассмотрению рабочего процесса дизелей, особенностей работы двигателей как на установившихся, так и на неустановившихся режимах. Уделено внимание проблеме токсичности отработавших газов дизелей и карбюраторных двигателей. Впервые в книгу включены разделы, освещающие режимы нагрузки двигателей при работе на строительных и дорожных машинах. Специфические особенности рабочего процесса.  [c.446]

Детонация — быстро приближающийся к взрыву процесс юрс-ния горючей смеси в цилиндре карбюраторного двигателя, при котором резко (в сто раз) увеличивается скорость распространения пламени.  [c.143]

К две с внутренним смесеобразованием относятся дизельные двигатели. В таких двигателях на процессы смесеобразования, происходящие непосредственно-в цилиндре, отводится незначительное время — от 0,05 до 0,001 с это в 20—30 раз меньше времени внешнего смесеобразования в карбюраторных двигателях. Подача топлива-в цилиндр дизеля, последующее-распыливание и частичное распределение по объему камеры сгорания производится топливоподающей аппаратурой насосом и форсункой.  [c.204]

Процесс работы четырехтактного карбюраторного двигателя  [c.415]

Рис, 34-2. Процесс работы четырехтактного карбюраторного двигателя  [c.415]

Трудность обеспечения надлежащего смесеобразования в дизеле объясняется незначительностью времени, отводимого на его осуществление. Если в карбюраторном двигателе процесс смесеобразования протекает за период, соответствующий повороту кривошипа примерно на 360°, то в дизеле процессы введения в рабочий цилиндр топлива, перемешивания его с воздухом и сгорания протекают в течение времени, соответствующего повороту кривошипа на 30—40°,  [c.425]

Процесс сгорания рабочей смеси в цилиндрах карбюраторного двигателя  [c.430]

На рис. 34-11 показана часть развернутой индикаторной диаграммы карбюраторного двигателя, характеризующая процесс сгорания топлива в цилиндре при зажигании топлива от искры по оси абсцисс отложены углы поворота коленчатого вала (а), по оси ординат — давление р.  [c.431]

Однако индикаторная диаграмма, снятая с работающего двигателя, отличается от теоретической (рис. 34-13). Это объясняется тем, что при построении расчетной диаграммы на некоторых участках принимается несколько иное протекание кривых, отображающих процессы, составляющие цикл двигателя, чем на индикаторной диаграмме. Такие отклонения имеют место вблизи точек 2 вследствие опережения зажигания в карбюраторных двигателях или опережения впрыскивания топлива в дизелях 5 для карбюраторного двигателя или точки 3 для дизеля вследствие движения поршня в период сгорания, 4 вследствие опере-  [c.432]


Из формулы (364) следует, что т] тем больше, чем больше степень сжатия и показатель адиабаты k. При заданном k r t возрастает при увеличении е. Однако увеличение степени сжатия е ограничивается скоростью процесса сгорания топлива. При очень высоких скоростях сгорания топлива наступает явление детонации — сгорание топлива со скоростью взрыва, что приводит к снижению надежности и экономичности двигателя. Поэтому степень сжатия для карбюраторных двигателей не превышает 6—9. Давление в конце процесса сжатия (точка 2) достигает 4— 12 бар.  [c.156]

Такт сжатия протекает при закрытых впускных и выпускных клапанах. Поршень движется от нижней к верхней мертвой точке. При этом происходит подготовка топлива к сгоранию. Процесс сжатия в двигателе вследствие теплообмена горючей смеси со стенками цилиндра не может быть адиабатическим и протекает по политропе с постоянным средним показателем i = 1,3 ч- 1,36. Давление в конце такта сжатия достигает 4—12 бар у карбюраторных двигателей и 30—40 бар у дизелей, температура соответственно 650—700 и 800—900 К.  [c.159]

Процессы сгорания в дизелях и карбюраторных двигателях различны. В карбюраторных двигателях засасывается в цилиндр и сжигается горючая смесь. К моменту воспламенения она хорошо перемешана, т. е. коэффициенты избытка воздуха — средний по всей камере сгорания и истинный в любой ее точке — почти равны между собой. В дизелях топливо впрыскивается в конце процесса сжатия, когда температура сжатого воздуха значительно превышает температуру самовоспламенения топлива (при давлении около 30 бар температура воздуха составляет примерно 700° С, что почти на 400° С превышает температуру самовоспламенения дизельного топлива). Однако впрыснутое топливо воспламеняется не мгновенно, а с некоторой задержкой, которую называют периодом задержки воспламенения. В течение этого периода топливо распределяется по камере сгорания, прогревается, перемешивается с воздухом и испаряется. Продолжительность периода задержки самовоспламенения составляет 15—20° поворота коленчатого вала и в основном определяется свойствами топлива, а также температурой и давлением воздуха, в который оно впрыскивается.  [c.160]

Таким образом, действительные индикаторные диаграммы (см. рис. 66) существенно отличаются от теоретических. В карбюраторных двигателях процесс сгорания происходит при переменном объеме, в связи с этим максимальное давление сгорания меньше, чем в теоретическом цикле. Индикаторная диаграмма имеет плавные очертания у верхней и нижней мертвых точек вследствие опережения зажигания, предварения открытия и запаздывания закрытия клапанов двигателя. В индикаторной диаграмме четырехтактного дизеля процесс сгорания топлива происходит при переменном давлении и, следовательно, мощность действительного двигателя ниже, чем теоретического.  [c.161]

Одно из требований, предъявляемых к двигателю в процессе эксплуатации, — легкость его запуска. При пуске двигателя коленчатый вал необходимо вращать с такой частотой, при которой в конце сжатия температура и давление горючей смеси или воздуха в цилиндре повысятся до величины, необходимой для воспламенения топлива. Минимальная пусковая частота вращения вала карбюраторного двигателя составляет примерно 50 об/мин, у большинства дизелей — 100—200 об/мин. При меньшей частоте вращения вала увеличивается теплообмен между сжимаемой и охлаждающей средами, увеличиваются утечки газа  [c.176]

Иначе говоря, при карбюраторном процессе требуемое содерока-ние углерода в металле по расплавлении достигается изменением расхода карбюратора в завалку. В этом состоит основная особенность этого варианта мартеновского процесса.  [c.437]

В соответствии с различными принципами смесеобразования различаются и требования, которые предъявляют карбюраторные двигатели и дизели к применяемым в них жидким топливам. Для карбюраторного двигателя важно, чтобы топливо хорошо испарялось в воздухе, который имеет температуру окружающей среды. Поэтому в них применяют бензины. Основной проблемой, препятствующей повышению степени сжатия в таких двигателях сверх уже достигнутых значений, является детонация. Упрощая явление, можно сказать, что это — преждевременное самовоспламенение горючей смеси, нагретой в процессе сжатия. При этом горение принимает характер детонационной (ударной, несколько напоминающей волну от взрыва бомбы) волны, которая резко ухудшает работу двигателя, вызывает его быстрый износ и даже поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добавляют в топливо антидетонаторы — вещества, пары которых уменьшают скорость реакции. Наиболее распространенный антидетонатор — тетраэтил свинца РЬ ( 2Hs)4 — сильнейший яд, действующий на мозг человека, поэтому при обращении с этилированным бензином нужно быть крайне осторожным. Соединения, содержащие свинец, выбрасываются  [c.180]

В карбюраторных двигателях регулирование мощности производится изменением положения дроссельной заслонки. При малых нагрузках и на холостом ход ухудшаются процессы газообмена, увеличивается доля / статочных газов в цилиндрах. Для компенсации этого необходимо обогащать смесь,, что приводит к росту концентраций СО и С Нт. На режимах полных нагрузок для обеспече-  [c.16]

Значения р<. и 7 для карбюраторных ДВС составляют соответственно 1—3 МПа и 600 — 800 К, для дизелей 3 — 8 МПа и выще 800-1100 К. Давление в конце процесса сюрания  [c.240]


После определения параметров конца сгорания рассчитывается процесс расширения. Если задана степень поеледую-шего расширения 8= F(,/E, = е/р, то в конце расширения температура Т(, = = Г,/8" и давление рь = Р /8" Ть = = 1200 -ь 1700 К для карбюраторных двигателей и Тъ — 1000 1400 К для  [c.241]

В карбюраторных двигателях внутреннего сгорания детонация горючей омеси в процессе ее сжатия резко ухудшает работу и может вызвать износ и поломки. Для ее предотвращения выбирают топлива с достаточно высокой температурой воспламенения или добавляют в топливо антидетонаторы — вещества, пары которых взаимодействуют с активными радикалами, уменьшая скорость реакции. Наиболее распространенный антидетонатор — тетраэтилсвинца РЬ(С2Н5)4—силь-  [c.148]

Двигатели с мгновенным сгоранием топлива (карбюраторные и газовые). Первый газовый двигатель был построен Отто (1876 г.), а первый карбюраторный двигатель был создан моряком русского флота О. С. Костови-чем (1879 г.). Горючая смесь в таких двигателях зажигается от внешнего источника (электрической искры высокого напряжения, раскаленного шара), время сгорания смеси очень мало, в связи с чем допустимо считать, что процесс сгорания осуществляется при (почти) постоянном объеме.  [c.202]

Процесс работы четырехтактного дизеля отличается от работы карбюраторного двигателя способом смесеобразования и воспламенения рабочей смеси. Основное отличие работы дизеля заключается в том, что в его цилиндр при такте впуска засасывается атмосферный воздух, который при такте сжатия сильно сжимается (до 3,5—4,0 Мн1м ). В конце такта сжатия в среду сжатого и раскаленного вследствие высокой степени сжатия (е=12—18) воздуха с помощью насоса высокого дав-, Таблица 34-1  [c.418]

Сравнение эффективности различных циклов д. в. с. производится путем сопоставления их теоретических к. п. д. Предположим, что в процессе сгорания смеси максимальные температуры Гз и давления рз одинаковы для сравниваемых д. в. с. Кроме того, принимаются одинаковыми конструктивные размеры цилиндров и начальные условия циклов. Сравнение циклов удобнее производить в координатах Т — s (рис. 65), так как площади циклов в этих координатах характеризуют количество использованного тепла. На рис. 65, а изображены 1—2р—3—4—цикл с подводом тепла при р = onst, 1—2v—3—4 — цикл с подводом тепла при v = onst и 1—2—2 —3—4 — цикл со смешанным подводом тепла. Как следует из рисунка, y tv < П см рассматриваемых условий дизели экономичнее карбюраторных двигателей.  [c.157]

В процессе продувки часть воздуха уходит вместе с продуктами сгорания через выпускные окна в атмосферу, поэтому для двухтактныхТдвигателей применять внешнее смесеобразование (карбюраторный двигатель) нецелесообразно. В этом случае будут  [c.164]


Смотреть страницы где упоминается термин Карбюраторный процесс : [c.266]    [c.378]    [c.435]    [c.437]    [c.438]    [c.265]    [c.168]    [c.160]    [c.184]   
Смотреть главы в:

Металлургия стали  -> Карбюраторный процесс



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте