Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Три основных коэффициента преобразования

Здесь величина Яц = у а х представляет собой, по определению безразмерную форму основного коэффициента преобразования сумма  [c.26]

ТРИ ОСНОВНЫХ КОЭФФИЦИЕНТА ПРЕОБРАЗОВАНИЯ  [c.71]

В ГЛ. 1 были даны определения каждой из величин, сейчас мы подробно остановимся на ряде важных деталей. Пусть символической схеме, изображенной на рис. 1-1, отвечают интервалы температур, изображенные на рис. 4-1. Рассмотрение низкотемпературного прямого цикла показывает, что далеко не всегда правильная оценка эффективности и расчет трех основных коэффициентов преобразования (в данном случае х, у и %е) являются простой задачей.  [c.71]


На примере низкотемпературного цикла была рассмотрена система трех основных коэффициентов преобразования теоретического, предельного и оптимального. Для тепловых машин, тепловых насосов и холодильных машин, особенно когда рассматриваются новые схемы и циклы, эта оценка эффективности весьма полезна.  [c.75]

Стандартный образец СО-2 (рис. 4.11) применяют для определения условной чувствительности, мертвой зоны, погрешности глубиномера, угла а ввода луча, ширины основного лепестка диаграммы направленности, импульсного коэффициента преобразования при контроле соединений из низкоуглеродистой и низколегированной стали, а также для определения предельной чувствительности.  [c.206]

Основными параметрами гидротрансформатора являются расход напор Я, мощность N, крутящий момент М, число оборотов п, передаточное отношение /, коэффициент преобразования (трансформации) К и коэффициент полезного действия т].  [c.82]

При нагреве пьезоэлектрического датчика его основные характеристики (коэффициент преобразования и емкость) значительно изменяются. Это происходит вследствие зависимости пьезомодуля и диэлектрической проницаемости от температуры. У разных материалов эти параметры изменяются по-разному. Существуют материалы, у которых с повышением температуры пьезомодуль изменяется мало, а диэлектрическая проницаемость — значительно. Поэтому для уменьшения температурной погрешности датчика эти материалы следует использовать в датчиках, работающих с усилителями заряда. Пьезокерамику, у которой пьезомодуль и диэлектрическая проницаемость изменяются одинаково, применяют в датчиках, работающих с усилителями напряжения. При нагреве датчика на электродах пьезоэлемента возникает электрический заряд, вызванный пироэффектом, температурной деформацией пьезоэлемента и основных конструктивных элементов датчика. При тепловом ударе сдвигаются пулевые показания датчика и изменяется его чувствительность.  [c.351]

Отсюда следует, что процесс оптимизации конструкции акселерометра в целом должен включать оптимизацию всех этапов преобразования. При этом для обеспечения при изготовлении акселерометра достаточных технологических запасов по его основным характеристикам значения коэффициентов преобразования должны быть по возможности максимизированы. На практике наибольшее значение имеет процесс оптимизации непосредственно механической конструкции акселерометра, т. е. первых двух этапов преобразования, так как для реализации третьего этапа сегодня существует достаточно много возможностей, определенных современной микроэлектроникой.  [c.171]


Рассмотрим оптимизацию механической конструкции более подробно. Основными метрологическими характеристиками акселерометра являются диапазон измеряемых ускорений, коэффициент преобразования, резонансная частота, амплитудно-частотная характеристика (АЧХ) и коэффициент поперечной чувствительности. При этом АЧХ акселерометра определяется его резонансной частотой и коэффициентом демпфирования, а остальные характеристики — выбором параметров механической конструкции упругого элемента. Учитывая, что для акселерометров любых конструкций имеет место обратная квадратичная зависимость коэффициента преобразования от резонансной частоты, целью оптимизации является выбор таких конструктивных параметров чувствительного элемента с учетом технологических ограничений на их изготовление, которые обеспечивают максимальное значение т. е. максимальные деформации в месте наклейки тензоре-зисторов, при заданной резонансной частоте.  [c.171]

Одной 113 основных характеристик термотрансформатора является коэффициент преобразования г з, который пока-  [c.168]

Основная погрешность преобразования по выходам 0,5 70-Коэффициенты масштабирования О—1. Время демпфирования О—24 с  [c.469]

В качестве примера, имеющего большое практическое значение в теории и практике расчетов лопаточных машин, в табл. 1-20 приведены коэффициенты преобразования их основных характеристик. При этом ис-  [c.64]

Коэффициенты преобразования основных  [c.64]

Для того, чтобы повысить КПД бинарного цикла с МГД-генератором, необходимо, в частности, увеличить коэффициент преобразования энтальпии в МГД-генераторе. Одним из перспективных направлений в этой области является разработка МГД-генератора с токонесущими неоднородностями [50]. Эти неоднородности могут создаваться путем локального перегрева основного рабочего тела (Г = 3500 К, а > 100 См/м), в качестве которого используются продукты сгорания органических топлив с присадкой щелочного металла. Генерируемый в МГД-канале электрический ток проходит лишь по малой, нагретой части потока, а основная масса рабочего тела может быть неэлектропроводной и совершает основную работу, проталкивая высокотемпературные токонесущие образования в магнитном поле. За счет джоулева разогрева температура и проводимость в высокотемпературном сгустке увеличиваются. По этой причине взаимодействие с магнитным полем не снижается по длине МГД-канала. Это дает принципиальную возможность расширить диапазон работы МГД-генератора в область низких температур (ниже 1800 К) и увеличить коэффициент преобразования энтальпии в МГД-генераторе до 30—35 %. Однако эта концепция требует экспериментального подтверждения при работе МГД-генератора.  [c.527]

Однако, как показали проведенные расчеты, такое приближение дает линию максимума г, практически совпадающую с линией (5.5), т. е. неточность определения поляризационных характеристик в основном предопределяется ошибкой в задании фазовых соотношений. К выражению (5.7) также можно прийти, использовав теорию длинных линий, если рассчитывать соответствующие энергетические коэффициенты по скачкам волновых сопротивлений на границах раздела между решеткой и свободным пространством. Это совпадение объясняется тем, что из строгого решения задачи дифракции на решетке из полуплоскостей в одномодовом районе следует совпадение выражений модулей коэффициентов преобразования с соответствующими формулами теории длинных линий [38].  [c.203]

Вторая группа экспериментов [45] относится к преобразованию частотной модуляции импульсов в параметрических генераторах света с синхронной накачкой. Основным их итогом явилась разработка нового метода управления скоростью частотной модуляции. Экспериментально показано, что скорость изменения частоты импульсов параметрической генерации или может существенно превышать скорость изменения частоты импульсов накачки причем коэффициент преобразования величин и определяется только дисперсионными характеристиками кристалла (см. также 3.3).  [c.194]


Лазеры с преобразованием частоты. Обеспечивая высокие уровни мощности, лазеры на стекле и иттрий-алюминиевом гранате с неодимом позволяют достаточно эффективно преобразовывать излучение в видимую область спектра (А,=0,53 мкм). Такое преобразование основано на нелинейном взаимодействии излучения с кристаллами [18], в результате которого на выходе кристалла появляется излучение второй гармоники, причем коэффициент преобразования во вторую гармонику обычно оказывается тем выше, чем выше уровень мощности и чем меньше угловая расходимость излучения основной гармоники [18].  [c.170]

Эксимер — молекула, устойчивая в возбужденном состоянии, но ие связанная в основном состоянии. Эксимеры инертных газов при высоком давлении испускают молекулярное излучение в области вакуумного ультрафиолета и обладают высоким коэффициентом преобразования кинетической энергии электронов в свет.  [c.188]

Сделаем некоторые выводы, полезные для экспериментальной работы. Невыполнение условия фазового синхронизма для определенных областей частотного спектра основного излучения ведет к сильному снижению коэффициента преобразования. Оно может быть существенно скомпенсировано при выполнении следующего условия  [c.282]

Рассчитанный на основании этих двух значений коэффициент преобразования подводимой мощности в мощность, излучаемую в воду, оказался равным 30%, что не очень сильно отличается от коэффициента преобразования описанного выше жидкостного концентратора возбуждаемого пьезоэлектрической керамикой. По-видимому, эта цифра в основном определяется механическими и диэлектрическими потерями в керамике по сравнению с которыми потерями в алюминии можно пренебречь.  [c.204]

Одной из основных характеристик ПАЭ является коэффициент преобразования к, определяемый из выражения  [c.169]

Вопрос о принципах построения абсолютной шкалы температур тесно связан с анализом основных принципов преобразования теплоты в работу. Действительно, как мы сейчас увидим, коэффициент полезного действия (к. п. д.) наивыгоднейшего с термодинамической точки зрения кругового процесса (цикла) теплового двигателя прямо определяется через абсолютные температуры взаимодействующих с двигателем тел. Это дает возможность свести вопрос о построении абсолютной шкалы температур к определению к. п. д. такого кругового процесса. Впервые этот круговой процесс был предложен (и обоснован как наивыгоднейший) Карно. Поэтому он получил название цикла Карно. Таким образом, изучение абсолютной шкалы температур надо начать с рассмотрения цикла Карно.  [c.117]

Основным узлом измерителя временных интервалов автокалибру-ющегося толщиномера УТ-55БЭ является управляемый преобразователь масштаба времени, который и обеспечивает адаптацию прибора к скорости распространения УЗК в контролируемом изделии. От правильной его настройки в значительной степени зависит точность измерений. Преобразователем масштаба времени осуществляется пропорциональное преобразование (в сторону увеличения) временного интервала между посылкой зондирующего импульса в контролируемое изделие и приемом донного сигнала в измеряемый временной интервал с коэффициентом преобразования, прямо пропорциональным текущему значению скорости УЗК в контролируемом изделии. Прибор имеет два органа иастройки. Первый из них — орган установки начального значения коэффициента преобразования, относительно которого при контроле изделий из различных материалов измеряется коэффициент преобразования преобразователя масштаба времени. Второй — орган регулирования крутизны управления коэффициентом преобразования, т. е. орган, изменяющий величину зависимости коэффициента преобразования преобразователя масштаба времени от скорости УЗК в контролируемых изделия .  [c.279]

Конечно, уравнения (6) могут быть использованы для непосредственного определения коэффициентов влияния, например, на аналоговой или цифровой машине [1]. Однако здесь мы изложим другой подход (см. пп. а—г), основанный на свойствах уравнений (6). Этот метод назван нами методом преобразованных систем. Рассмотрим сначала линейные системы. В соответствии со свойством уравнения (6), если исходная сисистема линейна (см. п. г.), то левые части основного уравнения и уравнения для коэффициентов влияния тождественны. Следовательно, для решения уравнений (6) мы можем воспользоваться самой системой (или ее моделью, электрической цепью и т. д.), убрав основное возбуждение и вводя возбуждение в соответствие с правой частью уравнения (6). Такая система, полученная из основной, называется преобразованной [2, 4, 5].  [c.82]

Введение преобразованных систем позволяет реализовать коэффициенты влияния и создать соответствующие аппаратурные методы для отыскания оптимальных параметров системы как в процессе конструирования, так и при реализации процесса самонастройки. Сущность этого направления состоит в физической реализации преобразованной системы, реакция которой на данное возбуждение и представляет собой искомый коэффициент влияния. Другими словами, из двух-трех экземпляров исследуемой цепи, включаемых как основная и преобразованная цепи, составляется общая цепь, функция передачи которой состоит из тех же сомножителей (кроме изображения основного возбуждения), что и изображение коэффициента влияния. Если на вход такой системы подать то же возбуждение, что и для расчетной цепи, то реакция на выходе будет представлять собой функцию времени, соответствующую искомому коэффициенту влияния. Так, на рис. 2 изображена блок-схема для аппаратурного определения коэффициента влияния вариации параметра дфАщ). В обычных электрических цепях такое физическое осуществление преобразованных цепей не вызывает никаких трудностей и сводится только к переключению нескольких шин.  [c.83]


Пр имером разнообразного определения ресурсов служат данные МИРЭК, 1974 г. [64]. В одном случае здесь для обозначения доли угля в основных мировых энергоресурсах используется величина 180-10 > Дж, в другом 177,5-10 Дж определяются как эффективные ресуреы. Если их перевести в тонны с обычно используемым для углей средним коэффициентом преобразования 23,28 млрд. Дж/т, то получим 7,7 трлн, т угля. Эта оценка сильно отличается от 551 млрд, т эффективных резервов угля (табл. 6) и является средней между общими ресурсами и остающимися извлекаемыми ресурсами.  [c.47]

Фотоэлектрическое преобразование солнечной энергии в электричество с использованием силиконовых солнечных элементов было разработано в 1955 г. фирмой Белл лабораториз (США) и стало с тех пор основной энергетической базой для космической техники. При затратах 10—15 тыс. долл, на пиковый 1 кВ-т и к. п. д. порядка 12—15 % производство электроэнергии этим методом обходится в 50—100 раз дороже, чем традиционным путем. Своего рода технологическая революция, подобная миниатюризации ЭВМ, потребуется для того, чтобы фотоэлектрическая энергия смогла стать важным элементом в мировой энергетике. Возможно, первые шаги в этом направлении прорыва проводятся в работе, организованной Электроэнергетическим исследовательским институтом США (EPPI) с объемом финансирования 25—30 млн. долл, на 1978—1983 гг. Работа направлена в основном на разработку термофотоэлектрических преобразователей, в которых включение металлического элемента между солнечным светом и солнечным элементом увеличивает использование инфракрасных лучей. Как сообщалось в 1977 г., работы, проводимые в Станфордском университете, позволили увеличить коэффициент преобразования с обычных 12% до 26% есть надежда на увеличение к. п. д. до 35 %> т. е. до уровня крупных электростанций. В этом направлении ведется много работ, и были указания, что разработка конкурентоспособных солнечных элементов в 1979 г. при использовании специальных аморфных сплавов в тонких пленках возможна  [c.218]

Поверка средств измерений параметров ударного движения, кроме указанных выше предварительных операций, включает определение коэффициента преобразования в вибрационном режиче на одной частоте с целью сравнения его с данными градуировки в основном (ударном) режиме. В качестве образцового средства измерений рекомендуются электродинамические ударные установки УУЭ-1/150 илн УУЭ-2/200, технические характеристики которых должны отвечать установленным требованиям. Для больших длительностей действия ударных ускорений используют установки с параметрическим возбуждением по ГОСТ 8.137—75 при малых длительностях — установки, в которых ударное движение создается на торце цилиндрического стержня (механического волновода) в результате воздействия на другой торец электромагнитных сил [И].  [c.305]

Одновременно с высокими темпами роста производства алюминия значительные качественные улучшения претерпела преобразовательная техника. На смену сложным мотор-генераторам механического действия с коэффициентом преобразования до 90%, требовавшим больших эксплуатационных затрат, пришли сначала ртутные выпрямители с коэффициентом преобразования 94—95%о, а с 60-х годов — полупроводниковые выпрямительные агрегаты. В качестве основного рабочего элемента в них используются кристаллы кремния или германия, обладающие свойством пропускать ток только в одном направлении. У лучших конструкций полупроводниковых выпрямителей коэффициент преобразования достигает 98%. Компонуются такие выпрямители в малогабаритных шкафах и требуют минимальных затрат на обслуживание. Полупроводниковые выпрямители наиболее надежны в эксплуатации. В настоящее время осуществляется повсеместная замена выпрямителей устаревщих конструкций полупроводниковыми.  [c.315]

С этой же целью разработана схема специального профилографа для снятия необходимых профилограмм. Основными частями прибора являются электронная ощупывающая головка с моторным приводом на три скорости и записывающий блок. Блок представляет собой систему из микроамперметра (с укрепленным на подвижной части зеркалом), источника света, фотокассеты и протягивающего механизма. Благодаря высокому коэффициенту преобразования электронного датчика, отпадает необходимость применять какие-либо усилители, что в значительной мере упрощает конструкцию и повышает точность прибора.  [c.112]

Перспективы широкого практического использования нелинейно-оптических приемников зависят от параметров каждой из трех основных частей схемы приема — оптической накачки, нелинейной среды и системы регистрации излучения видимого диапазона. Если в вопросе регистрации видимого излучения трудно ожидать каких-либо качественных изменений, то по каждому из первых двух пунктов последнее время наблюдается заметный прогресс. Использование в качестве нелинейных сред новых кристаллов с большими нелинейными восприимчивостями, большими размерами и высоким оптическим качеством и в ряде случаев газов позволило суш,ественно ослабить ограничения, связанные с низким коэффициентом преобразования при сравнительно маломош,-ной накачке. С другой стороны, в области создания источников накачки наметился принципиальный сдвиг благодаря появлению полупроводниковых лазеров нового поколения. Совершенно реально ожидать в ближайшее время появления достаточно надежных малогабаритных источников накачки мош ностью порядка нескольких ватт в непрерывном режиме. Это выведет нелинейпо-оп-тические приемники уже на приборный уровень — непрерывный режим работы при высокой энергетической эффективности, малогабаритность и простота конструкции.  [c.143]

ЮТ ультрафиолетовый и рентгеновский участки диапазона спектра частот. Однако первый освоен крайне слабо. Создана часть приборов на аргоне, криптоне и азоте.. Онн излучают в диапазоне волн 0,29...0,33 мкм и имеют очень незначительную мощность. Лишь работы последнего времени показали, что могут быть созданы и лазеры высокой мощности [14]. Для этого пригодны так называемые эксимерные лазеры на аргоне, криптоне и ксеноне. Эти инертные газы устойчивы только в виде одноатомных молекул. Однако некоторые возбужденные состояния Агг, Кгг, Хег могут образовывать связанные состояния, они-то и получили название эксимеров (молекула, устойчивая в возбужденном состоянии,.не связанная в основном состоянии). Эксимеры инертных газов при высоком давлении испускают молекулярное излучение в области вакуумного ультрафиолета и обладают высоким коэффициентом преобразования кинетической энергии в световое излучение. Возбуждение происходит при взаимодействии с быстрыми электродами. На рис. 16 показана последовательность реакций, происходящих в экси-мерном лазере на Хег. Верхнее возбужденное состояние лазерного перехода возникает в результате сложной последовательности соударений, в которой участвуют ионы Хе, Хеа, атомы Хе, молекулярные эксимеры Хег и свободные электроны  [c.42]

Общее решение дифференциальных уравнений (8.9а) и (8.96) представляет полное описание процесса генерации второй гармоники при облучении кристалла когерентным монохроматическим лазерным излучением и учитывает возникающее ослабление основной волны. Рассмотрим случай малых коэффициентов преобразования, когда пространственной зависимостью амплитуды основной волны можно пренебречь и решение задачи сводится к интегрированию (8.96). Если амплитуда второй гармоники на входе в кристалл, т. е. при г = 0, исчезает, то уравнение (8.96) легко проинтегрировать, вводя новые переменные r = t — zlv2 и 2 = 2  [c.278]


Зависимость интенсивности второй гармоники от интенсивности основной волны, как видно из этого выражения, является квадратичной. При А = 0 величина /г с ростом длины пути света в кристалле увеличивается по квадратичному закону. (Такой закон преобразования, конечно, имеет место при условии, что коэффициент преобразования мал.) Условие kk = 0 означает, что нелинейные волны поляризации и напряженности поля с частотами 2 oi распространяются с одинаковыми фазовыми скоростями, так что на всем пути фазовые соотношения между поляризацией и напряженностью поля сохраняются. При интенсивность второй гармоники в зависимости от г совершает периодические колебания (рис. 8.2). На пути длиной Lk = = п/А , называемом длиной когерентности фаз, она нарастает до максимума. Вследствие изменившихся фазовых соотношений между поляризацией и напряженностью поля при дальнейшем увеличении пути знак производной амплитуды по г меняется, так что энергия второй гармоники перекачивается обратно в основную волну. На длине пути 2Lk интенсивность второй гармоники падает вновь до нуля. Для сравнения на рис. 8.2 показано нарастание интенсивности (2/i oi)/2 при А = 0 (кривая 1). Это монотонно нарастающая пропорциональна 2 функ-  [c.279]

Если взаимодействие может считаться безынерционным (без наличия памяти), как это, например, имеет место при генерации гармоник или параметрической генерации вдали от атомных резонансов, то амплитуда генерируемого в момент времени Т1 импульса зависит исключительно от амплитуды импульса накачки в тот же момент времени (см. разд. 8.1). Поэтому преобразование будет эффективным лишь в те промежутки времени, в течение которых произведение амплитуд импульсов в выражении для нелинейной поляризации велико. Если при таком взаимодействии можно пренебречь частотно-ограничивающими эффектами, как это, например, имеет место при генерации гармоник в KDP в видимой области спектра (см. табл. 8.1), то интенсивность п-й гармоники /и(О при малых коэффициентах преобразования меняется во времени так же, как (/i( ))". Это значит, что фронты импульсов подавляются и импульс укорачивается (рис. 8.9, б). Если нельзя пренебречь ослаблением основной волны, то излучение накачки при нелинейном преобразовании частот особенно сильно снижается вблизи максимума импульса. Это ведет к уплощению импульса и в конце концов к образованию в его середине провала (рис. 8.9, а). Одновременно стабилизируется интенсивность импульсов. Импульсы основной частоты при внутрирезо-  [c.299]

При изменении температуры пластинки происходит изменение сразу нескольких параметров кристалла, от которых зависят коэффициенты Д и Т. Зависимость, вносяш,ую основной вклад в температурное изменение регистрируемого сигнала, назовем управляюш,ей функцией. Далее будет показано, что среди многих управляющих функций наиболее эффективны ехр(—а/г) и со8 2пкН). Первая из этих функций лежит в основе широко распространенного метода термометрии полупроводников по температурному сдвигу края межзонных оптических переходов [1.40]. При выполнении условия 0,2 аН 2 этот сдвиг обеспечивает высокую температурную чувствительность при регистрации отраженного или проходящего излучения. При аН <С 0,1 и аН > 3 чувствительность мала. На гармонической управляющей функции основан не менее распространенный метод лазерной интерференционной термометрии полупроводников и диэлектриков [1.43]. Здесь чувствительность также имеет максимум при определенной длине волны и падает как в длинноволновой, так и в коротковолновой областях спектра. Обе эти управляющие функции позволяют реализовать усиление изменений при малом относительном изменении температуры в и управляющего параметра а в) или п в) относительное изменение регистрируемой интенсивности света оказывается не малым. Двухступенчатое преобразование изменений температуры в регистрируемый сигнал (в данном случае сигналом является изменение интенсивности света после взаимодействия с пластинкой) характерно для активной оптической термометрии и, по-видимому, не характерно для традиционных методов (это проявляется в том, что отсутствует возможность усиливать или ослаблять коэффициент преобразования К = Д2/Д0 путем выбора условий считывания сигнала).  [c.21]

Основным недостатком параметрического приемника является малость амплитуды комбинационного тона, пропорциональной малому множителю Рг/Ро о- Как и для излучателя, коэффициент преобразования растет с увеличением амплитуды накачки рг- Однако при больших рг волна накачки превращается на трассе распространения от излучателя к приемнику в пилообразную и работа параметрического приемника переходит в нелинейный режим. При этом каждая гармоника последней накачки испытывает фазовую модуляцию под действием низкочастотной волны соответствующее решение рассмат2ивалось выше. Принимая во внимание соотношение (1.13), для амплитуды сателлита и-й гармоники, имеющего частоту поУх сог, получим  [c.139]

Приемники с изменяющимся омическим сопротивлением металлического проводника имеют величину х, несколько большую единицы, так как при растяжении металлической проволоки уменьшается и ее поперечное сечение. Уменьшение поперечного размера составляет аА///, где о — коэффициент Пуассона, обычно равный 0,25- 0,3. Уменьшение поперечного сечения (пропорционального квадрату поперечного размера) составит —2aAZ/Z, так что AR/R 1+2о)Al/ly х= 1+2а= I,5-f-l,6. Таким образом, параметрические приемники, кроме выполненных из пьезомагнитных материалов — ферритов, имеют обычно коэффициент преобразования х> мало отличающийся от единицы. Только у угольного порошка, основное сопротивление которого сосредоточено в тонких контактных слоях у поверхности зерен, благодаря тому, (что деформируются именно поверхностные слои,  [c.222]

Существует ряд способов возбуждения ультразвуковых колебаний, в том числе механический, рациационный, лазерный, магнитный и др. [2, 4, 5]. В практике диагностирования в полевых условиях для получения и ввода ультразвуковых колебаний применяют специальные устройства — преобразователи, основанные на использовании электромагнитно-акустического (ЭМА) и пьезоэлектрического эффектов. Важным преимуществом ЭМА-преобразователей является возможность контроля бесконтактным методом через слой изоляции. Вместе с тем такие преобразователи, в силу их конструктивных особенностей и низкого коэффициента преобразования, используются для прозвучивания поперечными и продольными волнами по нормали к поверхности объекта контроля и применяются в основном для толщинометрии металлоконструкций.  [c.147]

Этот принцип преобразования амплитуды в дискретный код был независимо предложен в период 1949— 1950 гг. за рубежом Вилкинсоном [32, 66], в нащей стране— А. А. Саниным [67], а несколько раиьще (в 1947 г.) для решения задач импульсной техники — В. Ф. Водопьяновым. И вот уже полтора десятилетия этот метод является основным в импульсной цифровой спектрометрии. Конечно, если интервал времени можно измерять с точностью, выще чем 10 °, то это не значит, что при использовании амплитудно-временного преобразования можно с такой же точностью определить величину амплитуды. Сам коэффициент преобразования амплитуды в длительность не удается сделать высокостабильным. Тем не менее при числе каналов порядка нескольких сотен этот метод обеспечивает требуемое равенство ширины канала и стабильности местоположения нуля спектрометра. Работы по совершенствованию способов преобразования амплитуды в длительность не прекращаются [4, 7, 68].  [c.85]

Во второй части учебника подробно излагается теория циклов тепловых двигателей и холодильных установок. Особенно обстоятельно рассматриваются циклы паротурбинных и газотурбинных установок. Больщое внимание в учебнике уделяется вопросам о потере работоспособности паросиловой установки и термодинамических принципах получения тепла. Здесь говорится о коэффициенте преобразования тепла, трансформаторах, тепловых насосах и циклах для совместного получения тепла и холода. Последняя глава второй части учебника посвящена термодинамике химических реакций. В этой небольщой главе кратко излагаются некоторые основные положения термохимии. Последний параграф этой главы посвящен общим свойствам растворов.  [c.351]


Смотреть страницы где упоминается термин Три основных коэффициента преобразования : [c.94]    [c.6]    [c.73]    [c.121]    [c.75]    [c.47]    [c.266]   
Смотреть главы в:

Циклы схемы и характеристики термотрансформаторов  -> Три основных коэффициента преобразования



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте