Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости и ползучести

Пределы выносливости и ползучести 337  [c.483]

Пределы выносливости и ползучести 176  [c.444]

Предел выносливости и ползучести 3—4  [c.343]

Прочность при динамических нагрузках определяют по данным, полученным в результате испытаний на ударную вязкость, предел выносливости и ползучесть. Значительно чаще используют испытания на ударную вязкость.  [c.552]

Прочность при динамических нагрузках определяют по данным испытаний на ударную вязкость, на предел выносливости и ползучесть. Наиболее часто применяют испытания на ударную вязкость в МН-м/м  [c.10]


Однако в присутствии водорода резко снижаются длительная прочность и предел выносливости и повышаются хладноломкость и ползучесть. Водородная хрупкость проявляется сильнее при высоких скоростях деформирования, при наличии надреза и при низких температурах.  [c.387]

Вторая группа включает параметры, оценивающие сопротивление материалов переменным и длительным статическим нагрузкам. При повторном нагружении в области многоцикловой усталости определяется предел выносливости на базе 10 -н2-10 циклов. Малоцикловая усталость отделяется от многоцикловой условно выбранной базой испытания (Л >5-10 циклов) и отличается пониженной частотой нагружения ( = 0,1-н5 Гц). Сопротивление малоцикловой усталости оценивается по долговечности при заданном уровне повторных напряжений или пределом малоцикловой усталости на выбранной базе испытаний. Сопротивление длительным статическим нагрузкам определяют, как правило, при температуре выше 20°С. Критериями сопротивления материалов длительному действию постоянных напряжений и температуры являются пределы ползучести (То,2/-с и длительной прочности Сх. Предел длительной прочности определяют при заданной базе испытаний, обычно 100 и 1000 ч, предел ползучести — по заданному допуску на остаточную (обычно 0,2%) или общую деформацию при установленной базе испытаний.  [c.46]

Пределы выносливости, ползучести и длительной прочности 386  [c.495]

Отсюда следует, что при высоких температурах предел прочности и предел текучести не могут служить критериями прочности. Критериями в этом случае надо считать предел ползучести и предел длительной прочности. При оценке усталостной прочности лопаток критерием прочности служит предел выносливости (усталости) при симметричном цикле а 1. Величину его следует принимать во внимание при выборе материала для лопаток наряду с пределами текучести и длительной прочности. Так же, как и последние, предел выносливости уменьшается с ростом температуры. На сопротивление усталости большое влияние оказывает чувствительность материала к концентрации напряжений, о которой можно судить, сравнив значения пределов выносливости гладких (0-1) и надрезанных (0-1) образцов.  [c.155]


Марочник построен по принципу применения и содержит сведения о химическом составе, механических свойствах и твердости в зависимости от размера поковки (отливки или детали) и режимов термической обработки параметры ковочных, литейных свойств и обрабатываемости резанием характеристики свариваемости, флокеночувствительности, склонности к отпускной хрупкости, а также некоторые справочные данные по механическим свойствам в зависимости от температур отпуска, испытания и ковки, по пределу выносливости при отрицательных температурах, релаксационной стойкости, длительной прочности, ползучести, жаростойкости, коррозионной стойкости даются сведения о зарубежных материалах, близких по химическому составу к отечественным.  [c.13]

Сопротивление усталости сталей при повышенных температурах находится в наиболее тесной связи с временным сопротивлением разрыву при соответствующей температуре (как это имеет место и при температуре 20° С). Отношение предела выносливости к временному сопротивлению разрыву при различных температурах находится в пределах 0,45—0,60. При повышенных температурах длительное действие статических нагрузок вызывает ползучесть металла. Предел ползучести с повышением температуры быстро падает, и опасные для деталей деформации или разрушения могут происходить при напряжениях значительно ниже пределов выносливости. Как правило, стали и сплавы, хорошо сопротивляющиеся ползучести, хорошо сопротивляются и усталости.  [c.30]

Жаропрочность титановых сплавов при 500° С, а именно пределы длительной прочности и ползучести (0,2%) показаны на рис. 17 для ресурса работы 100 ч. Длительная прочность для ресурса до 20 ООО ч приведена в табл. 3. Пределы выносливости гладких и надрезанных образцов пяти сплавов при различных температурах помещены в табл. 12.  [c.51]

Поскольку, как уже отмечалось, развитие усталостных трещин и выносливость материалов существенно зависят от условий испытаний, для оценки несущей способности реальных изделий при испытаниях стараются максимально отразить эксплуатационные факторы. Связь пороговых коэффициентов интенсивности напряжений и пределов выносливости исследовали на примере материалов, применяемых для изготовления компрессорных лопаток газотурбинных двигателей (ГТД). Компрессорные лопатки в эксплуатации подвержены воздействию высокочастотных вибраций при сравнительно низких амплитудах напряжений и ввиду отсутствия временных эффектов (например, ползучести) представляют собой идеальный объект для применения линейной механики разрушения. Присутствие коррозионной среды — морской воды при работе компрессорных лопаток судовых ГТД является основанием для коррозионно-усталостных эффектов. При оценке эксплуатационной пригодности материалов для турбинных лопаток необходимо рассмотреть влияние высоких температур. Учитывая, что лопатки работают в поле центробежных сил, порождающих асимметрию нагружения., необходимо исследовать его влияние.  [c.89]

Предел выносливости сплава ВБД-1П при 500 °С в два раза выше, чем у бериллия удельная жесткость (Ely ) при 20 °С ниже, а при 500 °С — на 10 % выше, чем у бериллия. Модуль упругости составляет 250 ГПа. Высокая жесткость сохраняется при температурах до 700 °С. Предел ползучести и длительная жаропрочность сплава ВБД-Ш при 400 °С такие же, как у деформированного бериллия при 300 °С.  [c.640]

Высокая жаропрочность (пределы текучести, кратковременной и длительной прочности, выносливости, сопротивление ползучести и т. д. ), сохраняющаяся, в отличие от обычных сплавов, разупрочняющихся вследствие коагуляции частиц, почти до температуры плавления Те)-  [c.171]

Многие детали при высоких температурах испытывают также и переменные нагрузки. В зависимости от уровня температур, напряжений, а также от формы образца (детали) соотношение между пределами ползучести и усталости может меняться. Так, обычно при высоких температурах у гладких образцов предел ползучести ниже, чем предел выносливости. Однако у надрезанных образцов предел выносливости при повышении температуры может понижаться сильнее, чем предел ползучести.  [c.330]


В справочнике даются сведения о физических свойствах многих марок сталей о механических свойствах сталей при обычной, повышенной и отрицательной температурах о пределах выносливости, длительной прочности и ползучести. Кроме распространенных сведений, приводятся коэффициенты экономической целесообразности использования сталей, прейскурантные цены, виды поставляемого полуфабриката и другие данные, отсутствующие в имеющейся справочной литературе. При этом отобраны наиболее достоверные сведения, подтвержденные практикой, а сведения, требующие дополнительной проверки, исключены.  [c.3]

BOB титана с целью определить возможности использования этих сплавов для лопаток паровых и газовых турбин, рассчитанных на эксплуатацию в течение длительного времени. Найдено, что многие из исследованных сплавов титана вплоть до температуры 450° С обладают более высокими значениями кратковременной прочности, длительной прочности, сопротивления ползучести, предела выносливости и эрозионной стойкости, но меньшей пластичностью, чем нержавеющая сталь марки 2X13. В результате проведенного исследования к полупромышленному опробованию в качестве материала для изготовления лопаток последних ступеней паровых турбин -с температурой до 100° С рекомендован один из сплавов титана с алюминием.  [c.41]

Теплостойкость — важнейший критерий работоспособности многих деталей. Работа некоторых машин сопровождается тепловьщелением, которое вызывается трением. Работа тепловых двигателей, литейных машин, прокатных станов связана со значительным тепловьщелением. Чрезмерное тепловыделение снижает работоспособность деталей машины и ухудшает качество ее работы. В стальных деталях при непродолжительном действии температур выше 300...400°С и в деталях из легких сплавов и пластмасс при температурах выше 100... 150 °С значительно снижаются механические свойства (предел прочности, предел текучести, предел выносливости и др.). При длительном действии высокой температуры в деталях машин наступает ползучесть, т. е. непрерывная пластическая деформация при постоянной нагрузке. При высокой  [c.10]

При повышенных температурах иепытания на усталость обычно наблюдается снижение пределов выносливости а связи с влиянием процессов ползучести, особенно в случае, если среднее напряжение цикла не равно нулю (кривые 1 и 4 на рис. 49). В углеродистых сталях в интервале температур испытаний 150 - 400 С наблюдается аномальное повышение пределов выносливости по сравнению с испытамиями при комнатной температуре, связанное с протеканием процессов динамического деформационного старения (рис. 49, кривая 3).  [c.81]

ЮО 150 200 250 300 Т ФИГ. 28. Изменение предела длительной прочности ajgij и предела ползучести сплава АК8 при повышении температуры (прутки, закалка и искусственное старение) (изменение предела выносливости сплава АК8 при повышении температуры си. фиг. 8).  [c.39]

Коэффициент Ч о в сильной степени зависит от скорости ползучести, которую имеет материал при заданных статическом напряжении и температуре. При малых скоростях ползучести (Pmin< <10- %/ч), как правило, Ч о=0,1— 0,15, а при скоростях ползучести 10 аустенитных сталей и никелевых сплавов значения Fo находятся в пределах 0,6 Ч о< 1.0. При высоком уровне статических напряжений (когда Pmin> >10 %/ч) они могут вызывать повышение предела выносливости матеоиала в этом случае коэффициент Ч о<0.  [c.150]

Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

Гц. Г1а рис, 5 и 6 представлена статистическая обработка результатов испытаний. Вплоть до 10 % долговечности на уровне перегрузки отнулевая перегрузка не вызывает снижения предела усталости. Возможное повреждение структуры было перекрыто значительным дефорлшгцт-онным упрочнением, обусловленным односторонним нагружением и первом цикле нагружения и отпулевьш повторным нагружением, при котором произошло накопление деформации циклической ползучести. Преобладающее действие усталостного повреждения над упрочнением проявляется только после 1500 циклов отнулевого цикла перегрузки. Предел выносливости значительно поип-жается — с 202 до 147 МПа.  [c.354]

Применяя диаграммы Гербера и Гудмана, используемые для металлов, нельзя в достаточной степени объяснить результаты экспериментальных исследований предела выносливости [6.43]. На рис. 6.51 показаны зависимости амплитуды напряжения от среднего напряжения [6.44]. В [6.45] предлагает я учитывать ползучесть, соответствующую среднему напряжению, и использовать диаграмму, представленную на  [c.190]


Рис. 16. Изменение предела длительной прочности а,00 и предела ползучести искусственное старение) (изменение предела выносливости сплаоа АК8 при повышении температуры см, рис. 11) Рис. 16. Изменение <a href="/info/7027">предела длительной прочности</a> а,00 и <a href="/info/1681">предела ползучести</a> <Ji/ioo сплава АК8 при поны-шении температуры (пруткн, закалка и <a href="/info/1778">искусственное старение</a>) (изменение <a href="/info/1473">предела выносливости</a> сплаоа АК8 при повышении температуры см, рис. 11)
Пределы длительной прочности, ползучести и выносливости стали ЭП65  [c.137]

На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

Сплаиы, предназначенные для кабельных оболочек, содержат большие количества таких элементов, как Sn, Sb, Те, d, [упрочняющих свинец и повышающих его твердость и сопротивление ползучести. Действие присадок, несколько повышающих предел прочности и твердость, г, язывается Главным образом на повышении предела выносливости, что особенно важно, так как кабели часто испытывают вибрации.  [c.220]

График эмпирической функции распределения предела длительной прочности (условного предела ползучести) при постоянной температуре испытания можно получить методом пробитов, модифицированным методом пробитов, методом ступенчатого изменения нагрузки, а также графическим путем. Первые три метода изложены в гл. 6 применительно к построению графика эмпирической функции распределения предела выносливости. В этом виде они могут быть использованы для оценки параметров и построения графика эмпирической функции распределения предела длительной статической прочности или условного преде.ча ползучести, а также для планирования испытаний.  [c.201]

Пределы длительной прочности, ползучести и выносливости (в МПа) стали 40Х15Н7ГФ2МС [47]  [c.428]

ПРЕДЕЛЫ ДЛИТЕЛЬНОЙ ПРОЧНОСТИ, ПОЛЗУЧЕСТИ И ВЫНОСЛИВОСТИ СПЛАВА ВТ25  [c.118]

Таким образом, показано, что полученная и процессе деформации полуфабрикатов структура определяет показатели механических свойств. I тип структуры обеспечивает высокие значения выносливости, пластичности и термической стабильности при рабочих температурах всех a-f-p-сплавов. У сплавов со структурой II типа наиболее высокие показатели длительной прочности и пределов ползучести при хорошем сочетании пластичности, выносливости и термической стабильности. Грубоигольчатая структура III типа сопровождается более низкими пластическими свойствами, особенно после упрочняющей термической обработки.  [c.266]

В присутствии олова повышаются прочностные свойства сплавов титана с алюминием, при этом пластичность их, если содержание олова не превышает 5%, не снижается. При добавке олова замедляется окисление сплавов титана с алюминием и повышается сопротивление ползучести. Оптимальными свойствами обладают сплавы, содер-жаш,ие около 4—5% А1 и 2—3% Sn. Эти сплавы имеют предел прочности 80— ё кПмм , предел текучести до 70— ОкГ/мм при удлинении более 10%. Сплавы сохраняют значительную прочность до температур, не превышающих 500" С, они хорошо свариваются без охрупчивания сварного шва и околошовной зоны. Снлавы малочувствительны к надрезу и имеют удовлетворительный предел выносливости. Они термически стабильны, термической обработкой не упрочняются. Исключение составляют сплавы с большим содержанием олова, которые наибольшее сопротивление ползучести обнаруживают после закалки из -области и отпуска в а-области.  [c.413]

Пределы длительной прочности, ползучести и выносливости. пистового материала, МПа  [c.102]

Таким образом, правильный выбор напряжений для металлов, предназначенных к длительной работе в услозиях высоких тегмпе-ратур, возможен только тогда, когда известны характеристики, полученные при длительных испытаниях металлов и сплавов на ползучесть и длительную прочность. Обе эти характеристики в основном зависят от температуры, величины нагрузки (напряжения) и структуры сплава. Наряду с этим от сплавов, предназначенных для работы при высоких температурах, требуются еше высокое со-яротивление термической усталости (разрушению в результате повторных нагревов и охлаждений), малая чувствительность к надрезу и высокий предел выносливости при рабочих температурах.  [c.205]


Смотреть страницы где упоминается термин Предел выносливости и ползучести : [c.442]    [c.71]    [c.14]    [c.17]    [c.137]    [c.331]    [c.61]    [c.147]    [c.479]    [c.387]    [c.40]    [c.56]    [c.348]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.3 , c.4 ]



ПОИСК



Выносливости предел

Выносливость

Выносливость и ползучесть

Предел ползучести



© 2025 Mash-xxl.info Реклама на сайте