Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система частиц и континуум

СИСТЕМА ЧАСТИЦ И КОНТИНУУМ  [c.6]

Глава I. Система частиц и континуум  [c.8]

СИСТЕМА ЧАСТИЦ И КОНТИНУУМ [Гл. I,  [c.8]

Назовем Г-пространством континуум 2М/ измерений, координатами которого являются М/ обобщенных координат и М/ обобщенных импульсов всех частиц, где N — число частиц системы, а / — число степеней свободы каждой частицы. Точка в Г-пространстве изображает состояние всей системы, а не одной молекулы, как это было в случае /г-пространства. С течением времени состояние системы эволюционирует, и изображающая точка перемещается по фазовой траектории, которая в случае замкнутой системы лежит на гиперповерхности постоянной энергии  [c.299]


В качестве основного замыкающего условия принимается, что движущаяся жидкая частица (элемент континуума) ведет себя как термодинамическая система, т. е. для нее справедливы выводы термодинамики, полученные для равновесных систем. Это предположение иногда называют гипотезой о локальном термодинамическом равновесии (ЛТР). Движущаяся жидкая частица считается системой, допускающей последовательное термодинамическое описание, т. е. использование фундаментальных законов термодинамики (применительно ко всей системе или ее макроскопическим подсистемам) и правил аддитивности (а также, например, закона Дальтона). При таком обобщении рассмотрение жидкой частицы как термодинамической полностью равновесной системы является частным случаем.  [c.22]

Особенность системы состоит в том. что движение частицы в горизонтальной плоскости является быстрым, а в вертикальном направлении — медленным. Поэтому медленное движение в данном случае, как и в пп. 7 и 8 таблицы, описывается одним уравнением первого порядка. Общин внд уравнений медленного движения для всех трех изученных задач теории вибрационного перемещения также одинаков. Уравнениями быстрого движения в задаче п. 9 таблицы являются первые два исходных уравнения движения системы эта уравнения допускают точное решение 17], однако приведенное выражение для вибрационной силы W(V ) приближенное, полученное в результате пренебрежения силами сопротивления в уравнениях быстрого движения. Из анализа этого выражения следует, что в результате действия вибрации сила сопротивления титла сухого трения трансформировалась а силу нелинейно-вязкого сопротивления (см. п. 7). Если при отсутствии ви ации характерно, что частица может находиться в равновесии в любой точке среды, т. е. обладает континуумом положений равновесия, то при достаточно интенсивной вибрации она непременно погружается (или всплывает).  [c.257]

Сплошную среду в механике рассматривают как непрерывную совокупность (континуум) частиц, называемых также материальными точками. Движение среды определяется по отношению к системе координат. Пусть в трехмерном пространстве задана некоторая система координат (например, это может быть прямоугольная декартова система координат). Используют два основных подхода к описанию движения сплошной среды 16, 17, 59, 64, 71, 82]. Первый из них — подход Лагранжа — состоит в том, что фиксируют координаты частиц (С ,С ,С ) в некоторый момент времени to, который в дальнейшем будем называть начальным, и все величины, характеризующие движение среды, рассматривают как функцию этих координат (называемых также материальными или вмороженными [82] координатами). Набор чисел (С ,С ,С ) однозначно определяет частицу среды.  [c.6]


В любой момент времени объем V сплошной среды, ограниченный поверхностью 5, занимает некоторую область пространства. Если в заданной системе координат в момент времени 1 установлено соответствие частиц некоторого объема сплошной среды и точек пространства, то это означает, что указана конфигурация сплошной среды. Непрерывный переход от начальной, в момент времени о, конфигурации сплошной среды к некоторой последующей (актуальной), сопровождаемый изменением расстояний между частицами объема сплошной среды, носит название процесса деформации. При изучении процесса деформации учитывают только начальную и конечную конфигурации. Промежуточные состояния, или последовательность конфигураций, через которые происходит деформация, при этом не рассматриваются. Используемый в дальнейшем термин течение служит для обозначения непрерывного (или мгновенного) состояния движения континуума. Изучение истории изменения конфигурации сплошной среды является частью исследования течения, для которого задано переменное во времени и в пространстве поле скоростей.  [c.39]

В 1.1 кратко обрисован обгций подход построения дискретных моделей несжимаемой жидкости из нринцина Гамильтона. Он сводится к аппроксимации исходного континуума дискретной системой частиц, на движение которых накладываются голо-номные ограничения, обеснечиваюгцие несжимаемость среды. Отсюда стандартным образом выводятся уравнения Лагранжа. При этом различные дискретные модели в рамках такого подхода отличаются друг от друга заданием конкретного вида условий несжимаемости и гравитационного потенциала. Далее приводятся примеры дискретизаций и коротко обсуждается проблема выбора дискретных условий несжимаемости.  [c.10]

В большинстве прикладных задач не удается описать течение газа, используя лишь модель идеального газа. Реальное течение сопровождается физико-химическими процессами, природа которых и методы математического описания существенно усложняются. Система уравнений и граничных условий, приведенная в 1 гл. для многоскоростной, многотемпературной и реагирующей сплошной среды, дает общее представление о сложности задачи описания движения такого континуума в наиболее общем случае. На практике приходится в основном иметь дело именно с такого рода течениями. Однако, несмотря на одновременное протекание различных релаксационных процессов, их удается разделить и изучать независимо, поскольку взаимное влияние по существу невелико. В частности, неравновесное возбуждение или дезактивацию колебательных степеней свободы можно изучить, используя неравновесные значения концентраций различных компонент, полученные в предположении равновесия поступательных и колебательных степеней свободы. Характер неравновесного протекания химических реакций в двухфазной среде лишь в слабой степени зависит от динамического и теплового состояния частиц. В связи с этим в настоящей главе будут раздельно рассмотрены неравновесные физико-химические процессы, которые могут иметь место в соплах, в том числе неравновесное возбуждение колебательных степеней свободы, химические реакции, неравновесные двухфазные течения.  [c.190]

Современное состояние вопроса общего математического описания дисперсных систем нельзя признать до-статочло удовлетворительным, несмотря на растущий интерес к этой проблеме. Каж травило, в работах, шо-священных этому вопросу, фактически используется феноменологический подход к исследованию дисперсного потока в целом. Идея условного континуума п03(В0Ляет полностью использовать математический аппарат механики сплошных сред, но несет с собой погрешности физического порядка тем более существенные, чем значительней макроднскретность системы. Системы таких уравнений, полученные рядом авторов как общие, все же не охватывают класс дисперсных потоков во всем диапазоне концентраций (вплоть до плотного движущегося слоя). Они не учитывают качественного изменения структуры потока и в связи с этим изменения закономерностей распределения частиц, появления новых сил (например, сухого трения), изменения с ростом концентрации (до предельно большой величины) условий однозначности и пр. В основном большинство работ посвящено турбулентному течению без ограничений по концентрациям, хотя при определенных значениях р наступает переход к флюидному транспорту, а затем — плотному слою. Сама теория турбулентности применительно к дисперсным потокам находится по существу в стадии становления (гл. 3). Наиболее перспективные методы — статистические (вероятностные) применяются мало, по-видимому, в силу недостаточной изученности временной и пространственной структур дисперсных систем Общим недостатком предложенных систем уравнений является их незамкнутость, которая объясняется отсутствием конкретных данных о тензорах напряжений и  [c.32]


Существует два подхода к математическому описанию ударных волн в многофазных дисперсных средах. С одной стороны, предположив, что размеры включений и неоднородностей в смеси намного меньше расстояний, на которых макроскопические параметры смеси меняются существенно, можно искать функциональные зависимости для этих параметров в классе непрерывных решений системы дифференциальных уравнений, построенной в рамках представлений механики гетерогенных сред [7]. Исследование микрополей физических параметров служит для определения межфазного взаимодействия и замыкания системы уравнений для осредненных характеристик. С помощью осредненных дифференциальных уравнений движения совокупности трех взаимопроникающих и взаимодействующих континуумов, заполняющих один и тот же объем, можно найти тонкую структуру ударной волны. Полная система уравнений, описывающая распространение одномерной стационарной ударной волны умеренной интенсивности в трехфазной гетерогенной среде типа твердые частицы-паровые оболочки - жидкость , и результаты численного решения изложены в п. 4.  [c.723]

Положение твердого тела и жидкости, - системы, обладающей бесконечным числом степеней свободы, относительно неподвижной системы координат 0 Х]Х2ХЗ, можно задать координатами тела д г = 1,Д2И абсолютными х, х2,хъ или относительными координатами Хи Хг, Хъ частиц жидкости, образующих континуум. Эти переменные удовлетворяют определенной системе уравнений движения.  [c.183]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]


Смотреть страницы где упоминается термин Система частиц и континуум : [c.292]    [c.7]    [c.365]    [c.30]    [c.66]    [c.182]   
Смотреть главы в:

Механика сплошной среды Изд3  -> Система частиц и континуум



ПОИСК



Континуум

Система частиц



© 2025 Mash-xxl.info Реклама на сайте