Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейный анализ временной неустойчивости

Линейный анализ временной неустойчивости  [c.188]

Таким образом, анализ динамики системы, описываемой линейными дифференциальными уравнениями с периодическими коэффициентами, требует определения фундаментальной матрицы ф за время одного периода (от / = О до Т) путем интегрирования уравнения ф = Лф с начальными условиями ф(0) = = /. Затем определяются собственные значения и собственные векторы матрицы а = ф(Г) и корни системы у = (1/Г)1п0. Формы составляющих движения определяются зависимостями PS = ф5е или U, = е- / фУ/ (где v, — собственные векторы а). Система неустойчива, если 9/ >1 или Re(X,/)>0 для какой-либо из мод. Часто анализ сводится лишь к нахождению собственных значений, поскольку переменные во времени собственные векторы периодической системы содержат много информации о ней. Для системы второго порядка с одной степенью свободы можно получить характеристическое уравнение непо-  [c.346]


Вернемся опять к полной модели Лоренца (359). У нее имеется три стационарных рещения при г > 1, и только два из них (360) устойчивы при небольшой надкритичности. Но что произойдет, если увеличивать параметр г, не ограничиваясь небольшими его значениями Первый вопрос — устойчиво ли равновесие (360) — можно опять рассмотреть с помощью линейного приближения вблизи равновесия. Соответствующий анализ показывает, что существует второе критическое значение га, выше которого происходит вторая бифуркация. Но это еще не все. Оказывается, система уравнений (359) имеет много различных мод движения. Самая удивительная из них была обнаружена самим Лоренцем при значениях параметров г = 28, <т = 10, ==8/3. Это решение получило название "странный аттрактор". Лоренц обнаружил, что система X, К, Z) совершает сложное хаотическое движение, похожее на "танец" вокруг двух неустойчивых фокусов. Стартуя с любой точки с небольшими X, , Z, система переходит на неустойчивый фокус, вокруг которого она начинает описывать витки с амплитудой, возрастающей со временем, т.е. пробегает траекторию по раскручивающейся спирали. После некоторого количества таких витков система внезапно устремляется ко второму фокусу, вокруг которого она снова описывает витки по раскручивающейся спирали. После нескольких витков, система снова перепрыгивает на первую спираль, чтобы приблизительно повторить то же самое движение. Однако никакой периодичности в таком движении нет и времена, в течение которых система находится вблизи одного из фокусов, и число витков на каждой из спиралей кажутся совершенно случайными. Хаотическое движение появляется в совершенно детерминированной динамической системе с тремя координатами X, V, Z.  [c.322]

При а>0 уравнение (1.13.1) допускает решение 7 = 0 то же д = Ь остается решением и при а<0. Взглянув на рис. 1.13.2, мы сразу же заметим, что положение д = О при а<0 неустойчиво. Однако во многих случаях, представляющих практический интерес, мы можем не опираться на существование потенциальной кривой (например, такой, как показано на рис. 1.13.2), а использовать другой подход — анализ устойчивости по линейному приближению. Введем для этого небольшое зависящее от времени возмущение и и запишем решение д уравнения (1.13.1) в виде  [c.60]

Исследование особенностей капиллярных колебаний заряженной капли представляет значительный интерес в связи с разнообразием академических, технических и технологических приложений (см. [1-2] и указанную там литературу). В связи с повышенным вниманием к такому физическому объекту большая часть задач, сформулированных для заряженной капли в рамках линейных моделей, уже решена. В последние годы появилось много работ, посвященных нелинейному анализу (см. [3-8] и указанную там литературу), позволяющему получать существенно более детальную информацию об объекте. Тем не менее, в связи с громоздкостью аналитических расчетов многие аспекты нелинейных колебаний заряженной капли остаются пока не рассмотренными или непонятными. Сказанное относится, например, к так называемой трансляционной неустойчивости капель и пузырей, проявляющейся, когда в спектре начально возбужденных мод имеются две соседние [4], а также к особенностям реализации внутреннего нелинейного резонансного взаимодействия различных мод капиллярных осцилляций капли [5,6]. Согласно [4] центр масс трансляционно-неустойчивой капли приобретает в результате реализации нелинейных колебаний скорость поступательного движения. Такое утверждение представляется неверным, поскольку противоречит известному положению механики никакими движениями внутри замкнутой системы невозможно привести в движение ее центр масс. Появление в расчетах [4] поступательного движения центра масс связано с некорректностью задания начальных условий, поскольку требование неподвижности центра масс в начальный и все последующие моменты времени следует ввести в формулировку задачи в качестве дополнительного условия, при этом поступательного движения (читай "трансляционной неустойчивости") при колебаниях поверхности капли не возникает. До сих пор не предпринималось попыток нелинейного анализа объемно заряженной диэлектрической капли, капиллярные осцилляции которой, как будет показано ниже, обладают рядом особенностей по сравнению с идеально проводящей каплей.  [c.104]


Хотя групповая скорость одинакова для волны накачки и стоксовой волны, их относительная скорость равна 2v , так как они распространяются навстречу друг другу. Релаксационные колебания возникают как следствие этой эффективной расстройки групповых скоростей. Частоту и скорость затухания релаксационных колебаний можно получить, анализируя устойчивость стационарного решения уравнений (9.2.7) и (9.2.8) аналогично тому, как это делалось в разд. 5.1 в случае модуляционной неустойчивости. Действие внешней обратной связи можно учесть, взяв соответствующие граничные условия на концах световода [23]. Такой линейный анализ устойчивости дает также условия, при которых непрерывный сигнал становится неустойчивым. Расс.мотрим небольшое возмущение уровня непрерывного сигнала, затухающее как ехр(-Лг), где комплексный параметр Л можно определить, линеаризуя уравнения (9.2.12) и (9.2.13). Если действительная часть Л положительна, возмущение затухает экспоненциально с релаксационными колебаниями частотой = 1т(Л)/2л. Если же действительная часть h отрицательна, возмущение возрастает со временем и непрерывный сигнал становится неустойчивым. В этом случае ВРМБ ведет к модуляции интенсивностей накачки и стоксова излучения даже в случае непрерывной накачки. На рис. 9.4 показаны области устойчивости и неустойчивости при наличии обратной связи в зависимости от фактора усиления tj L, определенного  [c.266]

В течение последних 20 лет известные успехи были достигнуты в численном моделировании волн конечной амплитуды (нелинейная теория). Линейная теория способна ответить только на вопрос о границе устойчивого и неустойчивого состояний и не может предсказать реальную форму волн и их эволюцию во времени. Экспоненциальный рост амплитуды волн при возникновении неустойчивости, предсказываемый линейной теорией, сам по себе предполагает, что эта теория выходит за пределы своих возможностей, как только такой рост начинается. В реальном процессе восстанавливающие силы (поверхностного натяжения, инерции, массовые) быстро нарастают с увеличением амплитуды волн, которая всегда остается конечной в гравитационных пленках. На основании численных исследований в рамках нелинейной теории были получены некоторые практически полезные результаты [43], однако они, как правило, не могут быть представлены в виде прость(х аналитических соотношений основные тенденции, следующие из численных решений, описываются обычно качественно. В частности, важный качественный вывод делается Холпановым и Шкадовым [43] в отношении влияния трения со стороны газового потока (т " ) на форму волновой поверхности жидкой пленки. Оказывается, начиная с некоторого значения т" (при заданном расходе жидкости Fq), увеличение касательного напряжения приводит к уменьшению амплитуды волн, чего никак нельзя было бы предположить на основе анализа в рамках линейной теории Кельвина—Гельмгольца.  [c.171]

Если такая поляризационно-неустойчивая среда помещена в ОР. то флуктуации поляризации могут нарастать во времени. В стационарном режиме прошедшее через ОР излучение оказывается в одном из двух симметричных состояний, отличающихся знаком угла поворота эллипса поляризации относительно исходного направления и направлением вращения вектора напряжённости поля. Линейной поляризации падающего на ОР излучения (/axt е = 0, ф = 0) соответствуют два возможных набора устойчивых значений параметров П1. ni и Фп1 (г = I, 2), причём ещ = —e , и фщ = = —фп4. Это соответствует поляризац. О. б. Полный анализ О. б. с учётом изменения поляризация излучения весьма громоздок, поскольку он сводится к анализу зависимости интенсивности / и двух параметров поляризации (вд, ф ) прошедшего излучения от соответствующих характеристик падающего. Однако указать область параметров оптич. системы, при к-рых возможна О, б. или мультистабильность, а также качественно понять, как проявляется О. б., можно из анализа вида бифуркац. поверхности — поверхности в пространстве параметров падающего излучения, на к-рой меняется число стационарных состояний поля в нелинейном ОР. Она определяется из ур-ния  [c.429]


Строгие методы теории устойчивости движения могут быть распространены на распределенные системы. При этом, например, вместо функций Ляпунова вводят функционалы Ляпунова, производные от которых по времени в силу уравнений движения обладают определен-Егыми свойствами. По этим свойствам судят об устойчивости (неустойчивости) невозмущенного движения. Если модель распределенной системы линейна или если для выводов об устойчивости используют уравнения первого приближения (уравнения в вариациях), то анализ устойчивости приводит к некоторым обобщенным задачам о собственных значениях.  [c.461]

В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

Картина развития возмущений в системе гармоника+субгармоника с начальными амплитудами А = 0,003, А = 0,001 для сдвигового слоя толщиной 5 = 0,3//г представлена на рис. б.Юа. Расчеты проведены для разности фаз Дф = ф2 - ф = я/2. На первом этапе, когда возмущения малы, они не взаимодействуют друг с другом и в соответствии с линейной теорией неустойчивости нарастают экспоненциально, без изменения синусоидальной формы. На рис. 6.106 этой стадии соответствует диапазон времени т = Шо1Х < 0,5. Для определения энергий гармоник, представленных на данном рисунке, проводились спектральный анализ пульсаций продольной скорости и последующее осреднение по поперечной координате  [c.352]

До сих пор мы рассматривали качественные изменения времен" ного поведения систем возбуждение колебаний, колебания с несколькими частотами, субгармонические колебания и т. д. Однако во многих физических, химических и биологических системах не следует пренебрегать пространственной зависимостью переменных системы. Например, в разд. 1.2.1 было показано, что пространственные структуры могут возникать в жидкости. В простейшем случае исходное состояние пространственно однородно. При некотором значении параметра управления однородное решение, как показывает анализ устойчивости по линейному приближению, может стать неустойчивым. Итак, требуется рассмотреть линейные уравнения вида  [c.75]


Смотреть страницы где упоминается термин Линейный анализ временной неустойчивости : [c.182]    [c.371]    [c.371]    [c.371]    [c.70]    [c.457]    [c.365]   
Смотреть главы в:

Введение в теорию концентрированных вихрей  -> Линейный анализ временной неустойчивости



ПОИСК



Анализ линейный

Неустойчивость

Неустойчивость временная

Ось временная

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте