Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сравнение систем регулирования

СРАВНЕНИЕ СИСТЕМ РЕГУЛИРОВАНИЯ  [c.139]

Рис. 5-13. Сравнение систем регулирования по величине интеграла ошибки. Рис. 5-13. Сравнение систем регулирования по <a href="/info/569190">величине интеграла</a> ошибки.

Обычно в исследованиях динамики систем регулирования скорости паровых турбин пренебрегают саморегулированием. Мы же учтем саморегулирование, так как оно оказывает существенное влияние в моменты остановки или замедления движения элементов системы. Для сравнения рассматривается и случай пренебрежения саморегулированием.  [c.5]

В настоящее время системы регулирования мощных паровых турбин ЛМЗ снабжаются рабочим телом от насоса с электроприводом. Предпочтение отдается центробежному насосу (ЦН) из-за лучшей характеристики его благодаря повышению расхода при падении давления масла. Кроме того, применяя ЦН, можно избежать постоянного дросселирования масла в редукционном клапане, что необходимо в системах с винтовым насосом, а это упрощает схему, повышает устойчивость и улучшает деаэрацию масла. Все эти преимущества перекрывают главный недостаток ЦН — его меньший к. п. д. по сравнению с винтовым. На номинальном режиме к. п. д. центробежного насоса, применяемого для систем регулирования, 0,25—0,4, а для системы смазки до 0,7.  [c.64]

Несложно доказать [10], что величина перерегулирования (рис. Х.9) зависит от тех же трех безразмерных комплексов /п, Z и il3, которыми определяются границы областей устойчивости и апериодичности. Эти комплексы представляют собой определяющие критерии подобия систем регулирования рассматриваемого типа. Нарушения автономности, соответствующие положительным значениям ш, увеличивают перерегулирование по сравнению с автономной системой. При отрицательных значениях т величина перерегулирования уменьшается.  [c.184]

СРАВНЕНИЕ СИСТЕМ ГРУППОВОГО РЕГУЛИРОВАНИЯ  [c.24]

Регулятор скорости гидротурбин является базой автоматизации гидроагрегатов. Через регулятор скорости осуществляется воздействие на гидроагрегат технологической автоматики, защит и почти всех имеющихся на ГЭС систем регулирования по различным параметрам. Качество работы систем группового регулирования определяется в основном качеством работы регуляторов скорости. Поэтому представляется весьма важным уточнение требований к регуляторам скорости и сравнение структурных схем и различных элементов регуляторов скорости в свете этих требований.  [c.32]

Внимательный осмотр доступных узлов систем регулирования и защиты, сравнение текущих показаний приборов с предшествующими, пытливое отношение ко всем непривычным отклонениям на работающей турбине, выполнение всех операций и проверок, предусмотренных инструкциями по эксплуатации, позволяют надежно эксплуатировать систему регулирования и, следовательно, турбину.  [c.351]


Внешний вид программного автомата и схемы управления резонансных стендов фирмы Шенк показан на рис. 91. Программный автомат 2 с фотоэлектрическим устройством, в которое помещается перфолента 1, считывает заданные параметры и передает их в систему регулирования 3. Туда же поступают соответствующие параметры с тензометрического динамометрического прибора, устанавливаемого последовательно с нагружаемой деталью и фиксирующего фактическое значение действующих нагрузок. Одноименные параметры поступают в схему сравнения, сигнал рассогласования с которой через дифференциальное реле управляет работой возбуждающего нагрузку вибратора. Имеющиеся схемы обеспечивают воспроизведение нагрузки с ошибкой, не превышающей, 2% заданной.  [c.145]

Основные данные, которые могут быть получены методом частотных характеристик,— это значения максимального статического коэффициента усиления и критической частоты системы. По этим двум параметрам могут быть найдены оптимальные значения трех параметров настройки регулятора. (Несколько более точные значения параметров настройки могут быть получены, если дополнительно учесть наклон частотных характеристик в точке, соответствующей критической частоте). Критическая частота является очень важным параметром еще и потому, что она является мерой скорости реакции системы, так как частота затухающих колебаний при оптимальных значениях коэффициента усиления регулятора обычно составляет 0,7—0,9 значения критической частоты. Во многих случаях для сравнения предложенных систем регулирования или для оценки целесообразности предлагаемого усовершенствования системы достаточно знать оптимальные настройки регулятора и скорость его реакции. В общем случае любое усовершенствование, которое позволяет удвоить либо допустимое значение коэффициента усиления регулятора, либо критическую частоту, улучшает в 2 раза качество регулирования, тах как интеграл ошибки, возникающей при возмущении по нагрузке, практически обратно пропорционален произведению максимального коэффициента усиления на критическую частоту [см. уравнение (5-26)].  [c.123]

Для уменьшения влияния помех на регуляторе обычно устанавливается меньшее значение коэффициента усиления. Если коэффициент усиления регулятора выбирается в диапазоне от 0,1 до 0,3 /(р.макс, то резонансный пик амплитудно-частотной характеристики замкнутой системы существенно уменьшается по сравнению с соответствующим значением при /(р = 0,5У(р,макс- На рис. 13-3 приведены амплитудно-частотные характеристики систем регулирования расхода с постоянными времени 0,5 0,2 и 0,3 сек при возмущении по нагрузке. Настройки регулятора, полученные на основании приведенных выше рекомендаций [уравнение (9-2)], равны кр = 4,2 и 7 п = 0,9 сек. При этих настройках максимальная дина-  [c.345]

Выще была рассмотрена работа систем регулирования в том случае, когда генератор снабжает электрической энергией автономного потребителя (не подключенного к общей электрической сети). Обычно одиночная турбина работает на общую электрическую сеть и ее мощность по сравнению с общей мощностью других турбин, также работающих на сеть, мала. В этом случае изменение нагрузки одной турбины практически не сказывается на частоте тока сети. При изменении потребления энергии (например, в вечернее время) изменяется частота вращения роторов всех турбин. Системы регулирования реагируют на это изменение и изменяют расход пара так, чтобы восстановилась частота вращения роторов  [c.138]

Очевидно, что построение САР с РП можно осуществить и другими способами. Так, если воспользоваться выражением (20), то в ряде случаев систему регулирования по распределенной информации можно построить путем использования программного управления. Тогда сигналы от датчиков температуры, расположенных в соответствующих точках пространства, должны поступать на преобразователь, в котором перераспределенная информация преобразуется в интегральную. В преобразователь должны поступать также и сигналы сравнения, определяемые задающим программным устройством. С преобразователя управляющий сигнал подается на усилитель и затем на регулирующие устройства (органы).  [c.19]


Для иллюстрации результатов, полученных с использованием различного вида интегральных оценок, и сравнения их с результатами, получаемыми при оптимизации выражения (1), рассмотрим систему регулирования, описываемую системами уравнений  [c.181]

По сравнению с электрическими гидравлические следящие системы имеют малую инерционность подвижных частей и поэтому быстрота их срабатывания примерно в десять раз выше, чем электрических систем. Вес и размеры гидравлических следящих систем в 5—6 раз меньше, чем электрических устройств той же мощности. Кроме того, гидравлические системы имеют плавное, равномерное перемещение, бесступенчатое регулирование, высокий коэффициент усиления, надежное демпфирование колебаний системы, простое предохранение от перегрузок, долговечность системы. Достоинства систем гидроавтоматики определяют перспективы применения ее элементов для различных горных машин.  [c.152]

К достоинствам подобных систем относятся повышенное по сравнению с обычными микроскопами разрешение, возможность регулирования яркости, контраста и масштаба изображения электронным способом, большой динамический диапазон (до 60 дБ и более). Для контроля материалов, прозрачных только в инфракрасном диапазоне спектра (кремний, германий, арсенид галлия), применяют лазеры, излучающие на соответствующих длинах волн, в сочетании с фотоприемниками, обладающими нужной спектральной чувствительностью. Возможно исследование объектов в поляризованных лучах, контролирование в них напряжений методом фотоупругости, а также исследование магнито- и электрооптиче-ских свойств материалов при использовании соответствующих источников электромагнитных полей.  [c.96]

При защите нескольких объектов от одного источника питания для регулирования тока в линиях в электрическую схему включают добавочные сопротивления (например, типа СД-210 или РСП). Автоматизированная установка содержит датчик контроля потенциала (электрод сравнения) и систему автоматического регулирования тока защиты. Примерные схемы автоматизированной и неавтоматизированной систем показаны на рис. 4.15, 4.16.  [c.71]

Система обработки текстов представлена для универсальных и специальных ЭВМ их программным обеспечением формирования текстовой информации и подготовки ее воспроизведения и размножения с полиграфическим качеством (машинопись, газета, журнал, книга). Для ее реализации необходимо иметь большое разнообразие программируемых шрифтов с градацией полиграфического качества и с вариантами технического исполнения (матричная печать, ксерография, лазерная и струйная печать). На исходный текст необходимо смотреть как на объект регулирования, ему противопоставлять эталонный (нужный), находить при сравнении ошибки, исключать их и восстанавливать текст. Нужно стремиться к быстродействию системы регулирования, к ее высокому качеству. В систему органически должна входить система согласования с машинной графикой для обеспечения полной визуальной идентичности изображений текста на дисплеях и устройствах выдачи твердых копий.  [c.20]

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов — вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов во-вторых,— повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки в-третьих, — возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло- и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло- и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.  [c.3]

Применение двух регуляторов вместо одного (по сравнению с обычно применяемыми решениями) несколько усложняет схему автоматики. Однако для поддержания заданной температуры воды на выходе из котла можно применять простейший пропорциональный регулятор прямого действия, выпускаемый серийно. Автоматическое регулирование температуры воды, поступающей в систему отопления, целесообразно осуществлять релейным астатическим регулятором. Применение схемы регулирования смешением воды является перспективным.  [c.11]

Достоинствами парового перегрева по сравнению с газовым являются сохранение нормальной более надежной конструкции котельного агрегата и обычных систем паропроводов станции и регулирования котла и турбины простота регулирования вторичного перегрева с помощью вентиля на подводе свежего пара значительное уменьшение опасности разгона турбины и отсутствие опасности пережога вторичного перегревателя при сбросе нагрузки незначительные потери давления и тепла перегреваемого пара.  [c.97]

Дистанционное управление при помощи гидравлической, пневматической или электрической систем по сравнению с контролированием тепловых процессов по приборам на местах, в значительной степени упрощает и облегчает управление тепловыми процессами котлов. Дистанционное управление может применяться как самостоятельное устройство или параллельно с устройством автоматического регулирования, с воздействием на одни и те же регулирующие органы.  [c.83]


Автоматическое регулирование следящих систем осуществляется сравнением действительного и требуемого расхода жидкости при помощи управления с замкнутой обратной связью. Тип привода и параметры замкнутой следящей системы должны выбираться с учетом статических и динамических характеристик привода и условий его работы.  [c.453]

Гидравлическая система силовой передачи (гидропривод) по сравнению с механическими, пневматическими и электрическими системами имеет следующие преимущества 1) возможность передачи больших количеств энергии 2) почти неограниченная возможность увеличения прилагаемой силы 3) бесступенчатая передача усилия 4) возможность точного регулирования скорости перемещения, величины усилия и положения рабочих элементов 5) малый объем и вес аппаратов по отношению к передаваемой энергии 6) простота защиты от перегрузок 6) малое влияние инерции 8) возможность определения прилагаемых сил и нагрузки 9) легкость изменения последовательности действия механизмов, скоростей и нагрузок 10) возможность конструирования систем любой желаемой сложности путем использования стандартных элементов [1].  [c.9]

Рис. 3.34. Сравнение структур систем сервоприводов а — обычная система система регулирования с памятью формы Рис. 3.34. Сравнение структур систем сервоприводов а — обычная <a href="/info/32749">система система регулирования</a> с памятью формы
Барабанные котлы по сравнению с прямоточными позволяют при пуске получать пар более низких параметров, что облегчает пуск из холодного состояния, предъявляют умеренные требования к качеству питательной воды, поскольку соли из цикла выводятся путем продувки барабана, обладают большой аккумулирующей способностью, что облегчает резкие набросы нагрузки при регулировании частоты сети. Однако они имеют и ряд недостатков барабан котла имеет толстую стенку, ослабленную многочисленными отверстиями под трубную систему. Поэтому при быстрых пусках и изменениях нагрузки в стенке барабана возникают высокие температурные напряжения. При их многократном повторении возникает опасность появления трещин термической усталости. Для снижения температурных напряжений при переходных режимах требуется ограничивать скорость пуска. Кроме того, применение барабанных котлов с естественной циркуляцией ограничивается давлением на уровне 17—18 МПа, поскольку при больших давлениях нарушается естественная циркуляция воды в экранах котла.  [c.384]

В настоящее время в мире все большее распространение получают активные системы теплоснабжения со специально установленным оборудованием для сбора, хранения и распространения энергии СИ, которые по сравнению с пассивными позволяют значительно повысить эффективность использования СИ, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.  [c.146]

В предлагаемой книге рассмотрены вопросы, связанные с разработкой научно-технических основ, проектированием и конструированием автоматических систем анодной электрохимической защиты. Большое место в книге отведено средствам регулирования и контроля потенциала, рассчитанных на длительную непрерывную работу, а также автоматическим унифицированным электронным системам защиты. Немаловажное внимание уделено подбору, конструктивному оформлению катодов и электродов сравнения. Без надежной работы этих элементов система анодной электрохимической защиты была бы неуправляемой.  [c.6]

Таким образом, используя лишь естественные ограничения датчиков и не применяя никаких логических элементов, можно построить систему, близкую к оптимальной по расходу рабочего тела. Следует заметить, что при этом будет большое время регулирования. При сравнении по импульсу тяги данной системы с системой, оптимальной по быстродействию, легко подсчитать, что для последней при е = О  [c.69]

Практически каждый тип турбины имеет свою индивидуальную систему регулирования. Рассмотрим водяную систему регулирования турбины К-300-240 ХТГЗ как более сложную в эксплуатации по сравнению с САР, работающими на более вязких жидкостях.  [c.81]

В случае создания высококачественных систем регулирования определяющими становятся экономические соображения. Типич ным примером может снова служить система регулирования температуры перегрева. Известно, что при поддержании температуры в узких пределах можно при сохранении полной эксплуатационной надежности более полно иапользовать возможности металла, чем при колебании температуры в широких пределах. Экономический эффект этого заключается в повышении срока эксплуатации металла пароперегревателя, в уменьшении стоимости текущих и капитальных ремонтов. В некоторых случаях может быть достигнуто повышение к. п. д. процесса и, как следствие, уменьшение расхода топлива или увеличение выработки энергии. Другой распространенный пример в этой связи — автоматическое регулирование процесса горения. Известно, что при правильно работающей системе регулирования избытка воздуха ibo многих случаях мо.жет быть получена существенная экономия топлива по сравнению с ручным регулированием этого процесса. Здесь проявляется положительное действие хорошего регулирования прежде всего в форме снижения затрат на топливо, причем наряду с эти.м уменьшается количество обслуживающего персонала.  [c.359]

Проиллюстрируем сказанное конкретным примером. На аналоговой вычислительной машине было произведено сравнение оптимальных процессов в контуре регулирования те шературы перегрева, получаемых при одном и том же возмущении, но при различных системах регулирования. На основании рыночных цен на аппар/атуру была также оценена стоимость каждой из испытанных систем. Результаты исследований представлены на рис. 16.2. По горизонтальной оси отложена относительная стоимость системы. По вертикальной — величина площади регулирования при оптимальном процессе Лмин п максимальное отклонение температуры вмакс- в верхней части рисунка изображены упрощенные схемы рассмотренных систем регулирования. Из графиков ясно, что меньшие значения Актш и О макс, т. е. лучшее качество регулирования, могут быть достигнуты за счет возрастания затрат на систему 360  [c.360]

В результате сравнения рассматриваемых структурных схем для случая, когда в одинаковую по качеству процесса линейную систему регулирования вводит-ся одинаковая по величине нелинейность главного сервомотора, можно ви-деть, что преимущество одного варианта схемы q перед другим по динамическим качествам опредв ляется величиной выбранных управляемых параметров р и Ti.  [c.82]

Сигнал заданной мощности турбогенератора поступает из регулятора 9 на электрогидравлическую систему регулирования турбины (ЭГСР) 12. Здесь происходит сравнение заданной и действительной Л д мощностей турбогенератора и вырабатывается сигнал рассогласования. Этот сигнал управляет через регулятор частоты вращения (РЧВ) 7 приводами клапанов турбины 8. Система 12 выполняет также функцию ограничения мощности турбины по сигналам ручного задатчика, давления в камере регулирующей ступени турбины 13, технологических защит и других параметров.  [c.283]


В СВЯЗИ С этим автор сделал попытку перестроить систему изложения, принятую в первом издании, так, чтобы можно было решать новые задачи, поставленные перед теорией механизмов и машин новой техникой. По сравнению с первым изданием автор изменил также порядок изложения материала. В новом издании сначала изложены общие вопросы теории механизмов и машин, необходимые для исследования механизмов всех видов (главы I—IV). Этот материал был подвергнут незначительной переработке. Главы V—IX, посвященные полному кинематическому и кинетостатическому исследованию механизмов различных видов, составлены заново. В главах X—XIII рассматриваются системы с двумя степенями свободы, механизмы с переменными массами звеньев, механизмы регулирования скорости движения машинного агрегата и основные сведения об автоматических устройствах (весь этот материал отсутствует в первом издании). Автор надеётся, что читатель, изучивший предлагаемый курс, получит достаточную подготовку для решения основных задач, связанных с проектированием новых машин.  [c.6]

Измерительные электроды для систем катодной защиты судов с защитными установками представляют собой прочные электроды сравнения (см. раздел 3.2 и табл. 3.1), постоянно находящиеся в морской воде при съеме небольших токов для целей регулирования они не должны подвергаться поляризации. Обычно применяемые в остальных случаях медносульфатные и каломелевые электроды сравнения могут быть использованы только для контрольных измерений. Никакие электроды сравнения с электролитом и диафрагмой (мембраной) непригодны для использования в качестве измерительных электродов длительного действия для защитных преобразователей с регулированием потенциала. Измерительными электродами могут быть только электроды типа металл — среда, имеющие достаточно стабильный потенциал. Электрод серебро — хлорид серебра имеет потенциал, зависящий от концентрации ионов хлора в воде [см. формулу (2.29)], что необходимо учитывать введением соответствующих поправок [4]. Наилучшим образом зарекомендовали себя цинковые электроды. Измерительные электроды похожи на протекторы, но меньше их по размерам. Они имеют постоянный стационарный потенциал, мало подвергаются поляризации, а в случае образования поверхностного слоя могут быть при необходимости регенерированы анодным толчком (импульсом) тока. Срок их службы составляет не менее пяти лет.  [c.366]

Все возрастающее применение сверхвысоких давлений, температур, скоростей, напряжений требовало создания аппаратуры более высокого класса в отношении точности и быстроты регулирования, безынерционности, непрерывности записи процессов и т. п. Производство оптико-механических и электроизмерительных приборов увеличилось в 1950 г. по сравнению с 1940 г. в 7 раз возросло производство фотоэлементов, реле, различного рода регуляторов, следящих систем, контрольных автоматов, автоматических измерительных устройств, сервомоторов, исполнительных механизмов и другой аппаратуры.  [c.243]

В большинстве градуировочных стендов используется фазоимпульсная статическая система регулирования скорости [4], которая отличается высоким быстродействием и малой средней квадратической погрешностью скорости ротора — порядка 10 % (за оборот). В качестве задатчика скорости обычно используется широкодиапазонный генератор с кварцевой стабилизацией частоты типа ГЗ-110, специальные генераторы или ЭВМ. Кроме задающего генератора и датчика обратной связи, в систему управления входят блок сравнения частот, фазовый детектор, корректируюш ее устройство, широтно-импульсный преобразователь. Источник опорного напряжения (грубый регулятор) выводит двигатель на заданный уровень скорости. После достижения равенства частот задающего генератора и частоты обратной связи включается в работу фазовый детектор. Сигнал, пропорциональный разности фаз входных частот, управляет работой широтно-импульсного преобразователя, который изменением скважности включения двигателя на источник питания обеспечивает стабилизацию скорости. Корректирующее устройство вводит в систему сигналы, пропорциональные первой и второй производным от угла рассогласования. Конструктивно система управления каждым ротором выполнена в виде отдельной унифицированной стойки с габаритами 1,7x0,6x0,6 м.  [c.152]

Электрохимический метод с использованием концентрационной электрохимической ячейки заключается в измерении электрической разности потенциалов между Na — ЫагО-полуэле-ментом (или иным, принятым для сравнения, с известной концентрацией кислорода) и натриевой системой. Расчет показывает достаточную чувствительность к незначительным колебаниям содержания примеси кислорода и возможность регулирования зависимости чувствительности от температуры. Весьма важна проблема неактивности и чистой ионной проводимости твердого электролита, разделяющего эталонный полуэлемент и измеряемую натриевую систему. На этом методе, весьма перспективном, пригодном для непрерывного контроля содержания активного кислорода в потоке металла, мы остановимся несколько подробнее.  [c.290]

Для правильного понимания и решения вопроса о выборе той или иной схемы необходимо предварительно оценить ожидаемый диапазон регулирования крупных котлоагрегатов. Практика показывает, что разгрузка до 50% вполне удовлетворяет требованиям экс-сплуатации большинства ТЭЦ и ГРЭС. Действительно, на вводимых крупных блочных агрегатах, имеющих повышенную по сравнению с остальными установками систем экономичность, в ближайшие годы будет преимущественно базовая нагрузка. Нагрузки ниже 50% для блочных установок крайне нежелательны по условиям экономики, так как при этом увеличиваются удельные расходы пара на турбину, растут расходы электроэнергии на собственные нужды, возникают трудности с поддержанием расчетных параметров пара. Специальные исследования показывают, что, учитывая все эти поло-  [c.171]

Более высокая маневренность систем управления, в которых регулируемым является сброс, по сравнению с системами, где регулирование ведется на входе в гидромуфту, обусловливается свойством характеристик последней. Действительно, интенсивность сброса нагрузки в этих системах, как показано выше, практически не ограничена. При запуске же не требуется столь больших подач жидкости по той причине, что характеристики гидромуфт, как видно из фиг. 6, представляют собой кривые, круто поднимающиеся с ростом скольжения. Причем при остановленной турбине полностью заполненная гидромуфта может передавать момент, в 15—20 раз больший, чем при скольжении в 3% кривые, соответствующие промежуточным значениям заполнения, приблизительно повторяют характер внешней ограничивающей характеристики. Это свойствс и позволяет применять рассмотренные системы там, где предыдущая группа не может удовлетворить требованиям быстродействия.  [c.158]


Смотреть страницы где упоминается термин Сравнение систем регулирования : [c.315]    [c.176]    [c.47]    [c.177]    [c.232]    [c.460]    [c.181]   
Смотреть главы в:

Регулирование производственных процессов  -> Сравнение систем регулирования



ПОИСК



Система сравнения

Системы регулирования ЭХО

Сравнение МКЭ и МГЭ

Сравнение систем группового регулирования



© 2025 Mash-xxl.info Реклама на сайте