Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость легированной конструкционной

В зависимости от вида свариваемых материалов электроды делятся на группы для сварки У - углеродистых сталей Л - легированных конструкционных сталей Т - легированных теплоустойчивых сталей В -высоколегированных сталей с особыми свойствами а также Н - для наплавки поверхностных слоев с особыми свойствами.  [c.176]

В комбинированных сварных конструкциях из разнородных сталей высокотемпературных установок находят применение стали разного уровня жаропрочности. По сочетанию свариваемых сталей они могут быть разделены на конструкции из сталей одного структурного класса, но разного легирования (конструкционные с теплоустойчивыми сталями, аустенитные стали разного уровня жаропрочности) и конструкции из сталей разного структурного класса, среди которых наиболее распространены соединения перлитных сталей с аустенитными и мартенситными или ферритными высокохромистыми сталями. Основные типы подобных конструкций, условия их сварки и требования к их работоспособности изложены в монографии автора [29].  [c.251]


Большинство низколегированных конструкционных сталей обладает удовлетворительной свариваемостью. Для качественной оценки свариваемости легированных сталей подсчитывают эквивалент углерода, например по формуле  [c.334]

Результаты оценки свариваемости основных конструкционных легированных сталей приведены в табл. 5.72. Здесь же даются рекомендации по технологии сварки и заварки дефектов в отливках.  [c.332]

Оценка свариваемости основных конструкционных легированных сталей  [c.334]

Точечную сварку применяют для изготовления изделий из углеродистых и легированных конструкционных, нержавеющих сталей, алюминия, меди и их сплавов, химически активных и тугоплавких металлов при толщине свариваемых деталей от 0,5 до 10 мм.  [c.647]

Стальные электроды изготовляют в соответствии с Г(Х1Т 9466—60. 9467—60, 10051—62, 10052—62. ГОСТ 9466—60 подразделяет электроды на группы в зависимости от свариваемых сталей а) углеродистых и легированных конструкционных б) легированных теплоустойчивых  [c.97]

Типы сварных швов, размеры КЭ подготовленных кромок и швов устанавливаются комплексом государственных стандартов. Эти стандарты охватывают сварные соединения из углеродистых и легированных конструкционных сталей, алюминия и алюминиевых сплавов, меди и медно-никелевых сплавов, свариваемых наиболее распространенными в промышленности способами сварки ручной дуговой автоматической и полуавтоматической (механизированной) под флюсом и в защитных газах электрошлаковой и контактной (ГОСТ 2601-84).  [c.79]

Состав электрода выбирают близким составу свариваемого металла. Стальные электроды по назначению делят на четыре класса для сварки углеродистых и легированных конструкционных сталей, для сварки легированных жаростойких сталей, для сварки высоколегированных сталей и для наплавки поверхностных слоев с особыми свойствами.  [c.142]

Свариваемость сталей зависит от степени легирования, структуры и содержания примесей. Наибольшее влияние на свариваемость сталей оказывает углерод. С увеличением содержания углерода, а также ряда других легирующих элементов свариваемость сталей ухудшается. Для сварки конструкций в основном применяют конструкционные низкоуглеродистые, низколегированные, а также среднелегированные стали. Главными трудностями при сварке этих сталей являются  [c.45]


Сталь (16). Углеродистая сталь (16). Легированная сталь (17). Условное обозначение широко применяемых марок стали (20). Маркировка углеродистой и легированной сталей окраской (21). Свариваемость конструкционной стали (24). Химический состав углеродистой горячекатаной стали обыкновенного качества (25). Механические свойства и результаты технологических испытаний углеродистой стали обыкновенного качества (26). Примерное назначение углеродистой стали обыкновенного качества (27). Механические свойства углеродистой качественной конструкционной стали (27). Примерное назначение качественной конструкционной углеродистой стали (29). Механические свойства конструкционной качественной холоднотянутой (калиброванной) стали (31). Химический состав автоматной  [c.532]

Конструкционные легированные стали - это стали, содержащие один или несколько легирующих элементов при суммарном их содержании 2,5... 10 %. Такие стали называют теплоустойчивыми (см. гл. 8). Наилучшие механические свойства они приобретают после закалки с последующим отпуском. Эти стали отличает высокая прочность при достаточной пластичности. Они склонны к резкой закалке и холодным трещинам. Наиболее часто трещины возникают в швах, сваренных электродами, стержень которых имеет состав, близкий к составу основного металла. С увеличением толщины свариваемого металла возможность образования закалочных холодных трещин возрастает. Для уменьшения вероятности образования трещин необходимо уменьшить перегрев шва, для чего нужно вести сварку на минимальном токе, применять предварительный перегрев и отпуск после сварки. Подогрев осуществляют двумя способами либо газовыми горелками, либо токами высокой частоты. Для второго способа подогрева используют водоохлаждаемые индукторы и специализированные источники питания. Индукционный подогрев более удобен с технологической точки зрения, к тому же он уменьшает наводораживание шва по сравнению с газовым пламенем. Однако газопламенный подогрев дешевле и поэтому до сих пор широко используется. Температуру подогрева деталей контролируют с помощью термокарандашей. Термокарандаш напоминает по внешнему виду цветной мелок. Цветную метку наносят на участок изделия, где нужно контролировать температуру. Затем изделие нагревают и следят за изменением цвета метки, которое происходит при определенной для данного термокарандаша температуре. Термокарандаши выпускают с шагом изменения температуры в 50 °С.  [c.126]

С в зоне шириной не менее 100 мм с каждой стороны свариваемых кромок. Для высоколегированных и легированных сталей температура подогрева составляет 250...350 °С. При температуре окружающего воздуха ниже - 5 °С швы металлоконструкций из низкоуглеродистых и низколегированных конструкционных сталей сваривают без перерыва за исключением времени на смену электрода и зачистку шва в месте возобновления сварки. Сварка деталей из высоколегированной аустенитной стали допускается до температуры - 20 °С без подогрева.  [c.291]

Наибольшее влияние на свариваемость сталей оказывает углерод. Она ухудшается при увеличении содержания углерода, а также ряда других легирующих элементов. Для изготовления сварных изделий применяют в основном конструкционные низкоуглеродистые, низколегированные и легированные стали. Главными трудностями при сварке легированных сталей являются их склонность к образованию закалочных структур, горячих и холодных трещин, а также ухудшение механических свойств — в первую очередь снижение пластичности в зоне сварки. Чем выше содержание углерода в стали, тем сильнее проявляются эти недостатки и тем труднее обеспечить необходимые свойства сварного соединения.  [c.54]

Сталями называют сплавы железа с углеродом, содержащие менее 2 % С. По химическому составу различают углеродистые и легированные стали. Содержание углерода в конструкционных углеродистых сталях составляет 0,06...0,9%. Он является основным легирующим элементом сталей этой группы и определяет их механические свойства и свариваемость.  [c.235]


Строительные конструкционные стали должны быть прочными, обладать хорошей пластичностью в горячем и холодном состоянии, хорошей свариваемостью, должны быть дешевыми и не содержать дорогих и дефицитных легирующих элементов. Строительные конструкционные стали — все низколегированные стали перлитного класса. Они прочнее нелегированных углеродистых сталей, поэтому конструкции одинаковой грузоподъемности, изготовленные из легированных строительных сталей, весят меньше, чем изготовленные ив углеродистых сталей. Стали для кон-  [c.167]

Легированные низкоуглеродистые стали по своей свариваемости мало отличаются от низкоуглеродистых конструкционных сталей. Однако они более склонны к росту зерна в околошовной зоне, а при высоких скоростях охлаждения в них могут появиться неравновесные структуры закалочного характера.  [c.366]

В инструментальном деле конструкционные стали находят себе применение для измерительного инструмента, подвергающегося цементации (шаблоны и скобы) для корпусов сборного инструмента (фрезы со вставными ножами, сборные развёртки и т. д.) для хвостовых (нерабочих) частей сварного стержневого инструмента (свёрла, развёртки, торцевые фрезы и т. п.), если рабочая часть этого инструмента изготовляется из быстрорежущих или легированных марок для мелких деталей сборного инструмента (шурупы, кольца, шпоночные втулки, гайки оправок и т. п.) державок для резцов, свариваемых встык и с наварной пластинкой из быстрорежущих или легированных сталей для нерабочей части сварных плоских плашек и ряда других видов инструмента.  [c.385]

Никель (в марках стали условно обозначается буквой Н) в обычных сталях содержится в количестве 0,2—0,3%, в конструкционных— 1—5%, в легированных — 8—35%, а в некоторых специальных сплавах достигает 85%. Никель не ухудшает свариваемость стали, измельчает ее зерно и является полезной примесью, увеличивающей пластичность и прочность стали.  [c.32]

Конструкционные стали при содержании углерода свыше 0,35% склонны к образованию закалочных трещин при сварке, требуют подогрева и последующей термической обработки. Применение присадочного металла с низким содержанием углерода позволяет избежать закалки шва прочность шва можно обеспечить легированием металла навариваемого шва марганцем, кремнием и другими элементами в необходимых количествах. Фосфор при содержании более 0,04% повышает хрупкость сварного шва. Сера отрицательно влияет на свариваемость стали, вызывая красноломкость металла вследствие образования легкоплавкой эвтектики, которая располагается между зернами. С увеличением содержания серы (более 0,04%) наблюдается образование трещин особенно при газовой сварке.  [c.337]

Следует отметить, что применяемые для строительных машин материалы лимитируют дальнейшее снижение их массы, увеличение скоростей рабочих движений, а также повышение надежности и долговечности. Необходимо в первую очередь создание и освоение достаточно дешевых легированных сталей с высоким пределом выносливости профильного проката, обладающего хорошей свариваемостью, ударной вязкостью не менее 10—12% и морозостойкостью при пределе текучести не менее 95— 100 кгс/мм конструкционной стали для крупных поковок, обладающей теми же качествами (кроме свариваемости) литья, имеющего в крупных отливках предел текучести не менее 75— 80 кгс/мм2 при ударной вязкости не менее 8%, хорошую морозостойкость, а также специальной стали, обладающей особо высокой износостойкостью при абразивном трении и твердостью не менее 400 единиц по Бринелю.  [c.146]

Строительные конструкционные стали должны быть прочными, обладать хорошей пластичностью в горячем и холодном состоянии, хорошей свариваемостью, должны быть дешевыми и не содержать дорогих и дефицитных легирующих элементов. Строительные конструкционные стали — все низколегированные стали перлитного класса. Они прочнее нелегированных углеродистых сталей, поэтому конструкции одинаковой грузоподъемности, изготовленные из легированных строительных сталей, весят меньше, чем изготовленные из углеродистых сталей. Стали для конструкций и сооружений, подверженных динамическим нагрузкам, должны обладать достаточно высокой ударной вязкостью в рабочих условиях. Строительные стали применяют в состоянии поставки (без дополнительной термической обработки). Часто строительные конструкции изготавливают из гнутых профилей и листов. Поэтому строительные стали должны быть достаточно пластичными. Стальные конструкции изготовляют преимущественно сварными. При их изготовлении широко применяют автоматическую и полуавтоматическую сварку. Чтобы обеспечить хорошую свариваемость без предварительного и сопутствующего подогревов, в строительные стали вводят не более 0,15% углерода при невысоком суммарном содержании легирующих элементов (до 2—3%). Сварные швы строительных сталей не требуют последующей термической обработки.  [c.165]

К У 3 м а к Е. М. и К а р а м 3 и н о в Н, П. Свариваемость двухслойного проката из конструкционных и легированных сталей. Труды Всесоюзного научно-технического совещания по проблемным вопросам сварки, Машгиз, 1958.  [c.303]

Углерод повышает прочность, снижает пластичность и вязкость легированной стали он также повышает чувствительность к перегреву и закаливаемости стали и поэтому отрицательно сказывается на ее свариваемости. Увеличение содержания углерода в стали при обычных условиях сварки способствует образованию трещин в околошовной зоне и шве. В современных низколегированных сталях углерод содержится в пределах 0,18—0,25%. В некоторых случаях в сталях, к свариваемости которых предъявляются повышенные требования, содержание углерода не превышает 0,12—0,14%. Низколегированные и среднелегированные конструкционные стали повышенной прочности, содержащие до 0,45% углерода, сваривают с предварительным подогревом и последующей термической обработкой сварных соединений.  [c.157]


Никель в низкоуглеродистых сталях содержится в пределах 0,2—0,3%, в конструкционных — от 1 до 5% и легированных — от 8 до 35%. Никель в стали увеличивает пластические и прочностные свойства, свариваемости не ухудшает.  [c.222]

Конструкционные средне- и высокоуглеродистые, а также легированные стали. Среднеуглеродистые стали содержат 0,26... 0,45 % С и широко используются для изготовления сварных конструкций. Высокоуглеродистые стали включают в себя 0,46...0,75 % С, отличаются плохой свариваемостью и редко применяются в сварных конструкциях. Конструкционные легированные стали имеют суммарное содержание легирующих элементов в пределах 2,5...10 %.  [c.430]

В результате исследования свариваемости легированных конструкционных сталей разработаны методика изучения кинетики превращений в металлах при помощи производного термического анализа и расчетный метод определения оптимальных режимов сварки закаливающихся сталей (Б. М. Матьякубов).  [c.24]

Сталь легированная конструкционная. 1-я группа (марки 30ХМ, 34ХМ1А, 35ХМ). Ограниченно свариваемая РДС, АДС под флюсом и защитой углекислого газа, ЭШС и АРДС. Необходимы подогрев и последующая термическая обработка.  [c.141]

Для изготовления оборудования газовых промыслов применяют низколегированные свариваемые стали с ферритоперлитной структурой, в виде листа и труб, с пределом текучести 240—400 МПа и легированные конструкционные стали с сорбитной структурой в виде проката и труб с пределом текучести 550—750МПа после термической обработки.. Воздействие сероводородсодержащих сред на стали с пределом текучести 240—400 МПа вызывает расслаивающие разрушения — блистеринг, одной из возможных причин которого может быть равновесное давление газообразных водорода и метана, образующихся в полостях — волосовинах и флокенах. Водород-  [c.85]

По химическому составу различают стали углеродистые и легированные. Содержание углерода в конструкционных углеродистых сталях составляет 0,06—0,9%. Углерод является основным легирующим элементом сталей этой группы и определяет механические свойства и свариваемость их. В зависимости от содержания углерода конструкционные углеродистые стали могут быть низкоуглеродистые (С 0,25%), среднеуглеродистые (С= =0,26-5-0,45%), высокоуглеродистые ( =0,46-5-0,76%). По качественному признаку различают углеродистые стали обыкновенного качества (ГОСТ 380—71) и качественные (ГОСТ 1050—74). Качественные стали имеют пониженное содержание вредных примесей (серы). Примером низкоуглеродистой стали обыкновенного качества, широко используемой в сварных конструкциях, является сталь БСтЗ, содержащая 0,14—0,22% С, 0,40—0,65% Мп, 0,12—0,30% 31, с пределом прочности ов=380-5-490. МПа и относительным удлинением 6=23-5-26%. В качестве примера углеродистой качественной стали можно назвать сталь 20, содержащую 0,17—0,24% С, 0,35— 0,65% Мп, 0,17—0,37% 31, с пределом прочности ав=420 МПа и относительным удлинением 6=26%.  [c.121]

Ответственные сварные узлы из конструкционных сталей, начиная с определенной для каждого легирования толщины свариваемых элементов,.должны подвергаться термическоГ обработке — отпуску при всех видах сварки за исключением электрошлаковой, когда требуется нормализация. Введение термической обработки необходимо для снятия сварочных напряженшй и восстановления структуры и свойств отдельных зон в целях устранения опасности хрупких разрушений в процессе испытания изделия при комнатной температуре и в эксплуатации при повышенных температурах (гл. III).  [c.162]

В случае соединений со сравнительно большой разницей в составе свариваемых сталей, и прежде всего в содержании карбидообразующих элементов, при высоких температурах эксплуатации появляется опасность диффузии углерода в зоне оплавления. С целью подавления этого явления и обеспечения тем самым конструкционной прочности соединения, при сварке используются специальные технологические приемы. К ним относится вварка в соединение переходного патрубка или предварительная облудка кромок трубы из более легированной стали. В табл. 3-7 указано, когда должны применяться эти приемы, а на рис. 3-50 приведены примеры их выполнения,  [c.156]

Выбор марки стали первых двух групп является относительно легкой задачей, так как критериями в данно.м случае служат их механические свойства и технологические особенности (свариваемость), а также техпико-экономические показатели их применения. Стали 3, 4 и 5-й групп, применяемые для изготовления деталей машин, работающих при обычных температурах, представляют подавляющую массу легированных марок конструкционной стали, подвергаемых термической обработке. Свойства этих марок стали могут изменяться в значительных пределах в зависимости от условий термической обработки, в частности температуры отпуска и массы (сечения), обрабатываемой заготовки. Поэтому характеристики свойств марок стали, приводимые в справочниках и стандартах, не могут служитьдостаточным критерием при их выборе.  [c.213]

Чрезмерное легирование ухудшает и технологичность стали (обработку резанием, свариваемость и т. д.). Исключение составляют никель и молибден. Никель повышает сопротивлеч 1е хрупкому разрушению, повышая пластичность и вязкость, уменьшая чувствительность к концентраторам напряжений и понижая температуру порога хладноломкости. При содержании в стали 1,0% N1 порог хладноломкости снижается на 60—80°С, дальнейшее увеличение концентрации никеля до 3—4% вызывает менее сильное, но все же снижение порога хладноломкости. Введение 3—4% Ni рекомендуется для обеспечения глубокой прокаливаемости. Никель уменьшает анизотропию и повышает пластичность и вязкость в направлении, поперечном волокну. Никель — дорогой металл. Поэтому чаще в конструкционные стали его вводят совместно с хромом и другими элементами и притом в предельно минимальном количестве. В сложнолегированных сталях, никель также обеспечивает высокое сопротивление хрупкому разрушению.  [c.288]

При относительно небольшой разнице в легировании свариваемых перлитных сталей предельная рабочая температура сварного стыка может быть допущена близкой к предельной для менее легированной стали. Поэтому например, в соединениях углеродистой стали с хромомолпбденовой сталью, содержащей до 1% хрома и 0,5% молибдена, или низколегированными конструкционными сталями максимальная рабочая температура определяется таковой для углеродистой стали п составляет 400—450°С. При этих темнературах мо кно не опасаться заметного развития диффузионных прослоек в зоне сплавления хромо-молибденовой стали со швом. Точно так же сварные соедпнения хромомолибде-новой стали с хромомолибденованадиевой илп 5%-ной хромистой сталью могут успешно эксплуатироваться до температур 500—520°С в соответствии с условиями работы изделий из хромомолибденовой стали. Механические свойства и длительная прочность таких соещшений находятся иа уровне свойств сварных соединений однородных сталей.  [c.203]

Сварка конструкционных среднеуглеродистых, легированных сталей. Свариваемость сталей ухудшается с увеличением содержания углерода. Содержание углерода больше 0,3% вызывает склонность сталей к закалке и образованию холодных трещин в свариваемом соединении и пор в металле шва. Во избежание образования пор и трещин при ручной сварке применяют электроды с фтористокальциевым покрытием (с малым содержанием водорода) типов Э-55 Э-85, а также предварительный подогрев и последующий высокотемпературный отпуск. Для изготовления сварных изделий из сталей типа 25ХГСА и ЗОХГСА с пределом прочности 110— 130 кгс/мм применяют термическую обработку (закалку и отпуск). Изделия больших габаритов можно изготавливать из предварительно термически обработанных элементов. Для сварки сталей 25ХГСА и ЗОХГСА используют все виды сварки.  [c.672]


Никель в пизкоуглеродистых сталях имеется в пределах 0,2— 0,3%, в конструкционных 1—5%, в легированных 8—35%. В некоторых сплавах содержание никеля достигает 85%. Никель увеличивает пластические и прочностные свойства стали, измельчает зерна, не ухудшая свариваемости.  [c.34]

В зависимости от химического состава конструкционных легированных сталей процесс сварки происходит по-разному. Сварка этих сталей имеет ряд особенностей, так как происходит частичное выгорание легиру-ЮШ.ИХ компонентов, поэтому металл шва по своим свойствам отличается от основного металла. Легированные стали по сравнению с низкоуглеродистыми хуже проводят тепло, склонны к перегреву свариваемого металла и появлению больших деформаций.  [c.79]


Смотреть страницы где упоминается термин Свариваемость легированной конструкционной : [c.46]    [c.124]    [c.124]    [c.406]    [c.536]    [c.187]    [c.226]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.14 , c.141 , c.143 ]



ПОИСК



Легированная Свариваемость

Легированная конструкционная

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте