Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легированная сталь конструкционная температурах

Чаще всего конструкционные легированные стали подвергают закалке в масле с последующим высоким или низким отпуском. Некоторые стали приобретают хорошие прочность и вязкость в результате изотермической закалки при температуре 300—400" С.  [c.177]

Легирование металлов. Легирование стали небольшими количествами меди, фосфора, никеля и хрома особенно эффективно для защиты от атмосферной коррозии. Добавление меди более эффективно в умеренном, чем в тропическом морском климате добавки хрома и никеля в сочетании с медью и фосфором повышают стойкость как в умеренном, так и в тропическом климате (табл. 8.5). Скорость коррозии конструкционных сталей в тропиках (например, в Панаме) в два и более раза выше, чем в умеренном климате (например, Кюр Бич), главным образом вследствие более высоких средних температур и относительной влажности.  [c.180]


Электропроводность конструкционных легированных сталей при повышении температуры уменьшается.  [c.7]

Все приведенные в справочнике конструкционные легированные стали имеют меньшую или большую флокеночувствительность после горячей обработки давлением. В литом состоянии все стали обычно не имеют флокенов, поскольку в этом случае имеется достаточно большое количество усадочных пор — резервуаров, в которые может выделяться водород з молекулярном состоянии при превращении аустенита и не создавать таких больших давлений в них, которые могли бы способствовать образованию флокенов при определенных температуре и времени.  [c.12]

Вода, охлаждающая направляющие, уносит 3—5% мощности, подводимой к индуктору. Части поверхности заготовки, прилегающие к направляющим, отстают в нагреве. Во время передачи заготовок от индуктора к ковочному агрегату температура поверхности в значительной степени выравнивается. При нагреве простых конструкционных сталей оставшаяся неравномерность температуры не сказывается на качестве поковок. При нагреве некоторых легированных сталей водоохлаждаемые направляющие не могут быть использованы. Для уменьшения отсоса тепла и повышения износоустойчивости на поверхности трубчатых направляющих в зоне скольжения заготовок наваривают полосы из стеллита высотой 2 3 мм и шириной 3—4 мм. Неохлаждаемые направляющие не отсасывают тепла от заготовок, но они изнашиваются довольна быстро (при тяжелых заготовках). Иногда их приходится сменять через 1—2 недели. Эти направляющие изготавливаются из металлической полосы в виде желоба, который свободно ложится на футеровку индуктора. Один конец полосы отгибается вниз, чтобы при проталкивании заготовок желоб не смещался. К индуктору желоб не крепится, поэтому его просто сменить.  [c.239]

Назначение, химический состав, физические свойства и температуры критических точек конструкционной легированной стали приведены в табл. 1—3.  [c.305]

Испытания стали легированной конструкционной — Температуры — Влияние на механические свойства 335, 390—392  [c.480]

Вода представляет собой резкий охладитель и употребляется для закалки конструкционной углеродистой стали с содержанием до 0,5о/о С и до 0,80/о Мп, инструментальной углеродистой стали с содержанием 0,65— 1,30 и не более 0,4% Мп и легированной стали марок В1, В2, Х05, Ф. Недостатками воды как закалочной среды являются а) большая охлаждающая способность при температуре детали 300—100° С, что приводит в некоторых случаях к образованию закалочных трещин б) изменение охлаждающей способности с повышением температуры (добавка  [c.631]


Скорость коррозии конструкционных материалов возрастает с увеличением концентрации кислорода в натрии. Для аустенитной нержавеющей стали типа 18-8, легированной молибденом при температуре 540° С, имеется следующая зависимость  [c.45]

Кроме обычных углеродистых сталей, которые подвергаются обезуглероживанию, все исследованные жаростойкие материалы довольно хорощо противостояли воздействию чистого натрия или натрий-калиевого сплава. Таким образом, титан, цирконий, ниобий, тантал, молибден, вольфрам, легированные стали, никель и сплавы на никелевой основе можно уверенно использовать в качестве конструкционных материалов в контакте с натрием при температуре около 800° С. Чистые сварочные швы, выполненные на обычном оборудовании для аргоно-дуговой сварки, стойки в этих условиях так же, как и основной металл. Обработка поверхности оборудования в данном случае повышает его коррозионную стойкость незначительно.  [c.319]

Полный отжиг применяется преимущественно для стального фасонного литья, поковок и проката из углеродистой и легированной стали с содержанием 0,45— 0,6% С, а также для сварных изделий. Температура отжига и получаемая твердость для некоторых конструкционных сталей приведены в табл, 70.  [c.110]

П р о к о ш к и н Д. А. Влияние температуры деформации при термомеханической обработке на механические свойства и порог хладноломкости конструкционной легированной стали. Металловедение и термическая обработка , 1966, № 9.  [c.65]

Фосфор — вредная примесь, способствует резкому снижению ударной вязкости стали, повышает температуру перехода ее в хрупкое состояние. Верхний предел содержания в конструкционных сталях общего назначения 0,04%, в качественных — 0,035 % и в легированных— 0,03 или 0,02%.  [c.278]

Конструкционные легированные стали - это стали, содержащие один или несколько легирующих элементов при суммарном их содержании 2,5... 10 %. Такие стали называют теплоустойчивыми (см. гл. 8). Наилучшие механические свойства они приобретают после закалки с последующим отпуском. Эти стали отличает высокая прочность при достаточной пластичности. Они склонны к резкой закалке и холодным трещинам. Наиболее часто трещины возникают в швах, сваренных электродами, стержень которых имеет состав, близкий к составу основного металла. С увеличением толщины свариваемого металла возможность образования закалочных холодных трещин возрастает. Для уменьшения вероятности образования трещин необходимо уменьшить перегрев шва, для чего нужно вести сварку на минимальном токе, применять предварительный перегрев и отпуск после сварки. Подогрев осуществляют двумя способами либо газовыми горелками, либо токами высокой частоты. Для второго способа подогрева используют водоохлаждаемые индукторы и специализированные источники питания. Индукционный подогрев более удобен с технологической точки зрения, к тому же он уменьшает наводораживание шва по сравнению с газовым пламенем. Однако газопламенный подогрев дешевле и поэтому до сих пор широко используется. Температуру подогрева деталей контролируют с помощью термокарандашей. Термокарандаш напоминает по внешнему виду цветной мелок. Цветную метку наносят на участок изделия, где нужно контролировать температуру. Затем изделие нагревают и следят за изменением цвета метки, которое происходит при определенной для данного термокарандаша температуре. Термокарандаши выпускают с шагом изменения температуры в 50 °С.  [c.126]

С в зоне шириной не менее 100 мм с каждой стороны свариваемых кромок. Для высоколегированных и легированных сталей температура подогрева составляет 250...350 °С. При температуре окружающего воздуха ниже - 5 °С швы металлоконструкций из низкоуглеродистых и низколегированных конструкционных сталей сваривают без перерыва за исключением времени на смену электрода и зачистку шва в месте возобновления сварки. Сварка деталей из высоколегированной аустенитной стали допускается до температуры - 20 °С без подогрева.  [c.291]

Механические свойства улучшаемых конструкционных легированных сталей в значительной мере определяются температурой отпуска. И здесь чрезвычайно важной их характеристикой, особенно при действии высоких переменных напряжений и ударной нагрузки у деталей машин с концентраторами напряжений, является температура перехода их в хрупкое состояние. Весьма ценным являются здесь механические испытания не только гладких, но и надрезанных образцов и целых деталей.  [c.337]


По современным представлениям, размер зерна является одной из основных характеристик, определяющих склонность металла к охрупчиванию и сопротивление распространению трещины. Чем мельче зерно, тем ниже критическая температура перехода в хрупкое состояние (порог хладноломкости) и вьппе работа развития трещины. Например, для среднеуглеродистой легированной стали измельчение зерна с 25 до 2-5 мкм одновременно приводит к повышению предела текучести в 1,3 раза, ударной вязкости в 1,8 раза, вязкости разрушения К с более чем в 1,3 раза при снижении Т р более чем на 100°С [ 146]. Таким образом, размер зерна во многом определяет конструкционную прочность стали.  [c.115]

Наибольшее значение имеют трещины, возникающие в процессе выдержек при термической обработке по третьему механизму. Они могут образовываться в сварных узлах, изготовленных из низколегированных конструкционных сталей повышенной прочности, теплоустойчивых сталей, а также жаропрочных аустенитных сталей и сплавов на никелевой основе. Очевидно такой широкий ассортимент материалов охватывает большинство сварных конструкций из легированных сталей, работающих в наиболее тяжелых условиях и в первую очередь при высоких температурах. В связи с этим в последнее время вопросам выяснения механизма образования подобных трещин и разработке мероприятий по их устранению уделяется большое внимание и появилось большое число статей, посвященных данной теме.  [c.94]

Высокотемпературная нитроцементация осуществляется для деталей из конструкционных сталей при температурах 830...950 °С и из легированных — гфи 850...870 °С. Процесс длится 4...10 ч, так как диффузия углерода существенно ускоряется в присутствии азота.  [c.74]

Основными преимуществами легированных конструкционных сталей перед углеродистыми являются более высокая прочность за счет упрочнения феррита и большей прокаливаемости, меньший рост аустенитного зерна при нагреве и повышенная ударная вязкость, более высокая прокаливаемость и возможность применения более мягких охладителей после закалки, устойчивость против отпуска за счет торможения диффузионных процессов. Отпуск при более высокой температуре дополнительно снижает закалочные напряжения. Легированные стали обладают более высоким уровнем механических свойств после термической обработки. Поэтому детали из легированных сталей, как правило, должны подвергаться термической обработке.  [c.275]

Ударная вязкость конструкционных легированных сталей при низких температурах испытания  [c.326]

Значения ударной вязкости конструкционных легированных сталей при различных температурах испытаний представлены в табл. 5.68.  [c.328]

Для порошковых деталей применяются оба метода нитроцементации высокотемпературная, которая производится при температурах 850-870 °С в течение 0,5-5 ч и используются для насыщения порошковых деталей из конструкционных углеродистых и легированных сталей для повышения их твердости, прочности и износостойкости низкотемпературная нитроцементация производится в диапазоне температур 550-600 °С (мягкое азотирование) и применяется для повышения износостойкости, твердости и теплостойкости порошкового инструмента из быстрорежущих сталей.  [c.483]

Рис. 6.35. Влияние температуры отпуска и скорости охлаждения от температуры отпуска на ударную вязкость конструкционных легированных сталей (схема) Рис. 6.35. <a href="/info/222925">Влияние температуры</a> отпуска и <a href="/info/166555">скорости охлаждения</a> от <a href="/info/233686">температуры отпуска</a> на <a href="/info/4821">ударную вязкость</a> конструкционных <a href="/info/294756">легированных сталей</a> (схема)
Понижение ударной вязкости после отпуска при 250 - 350° С наблюдается у всех конструкционных сталей независимо от степени легирования. Заметное падение ударной вязкости после отпуска при 500 - 600 °С наблюдается только у легированных конструкционных сталей — хромистых, марганцевых, хромоникелевых, хромомарганцевых и т.д. Снижения вязкости почти не происходит в случае быстрого охлаждения от температуры отпуска (в воде или масле). Отпускная хрупкость II рода заметно подавляется даже при медленном охлаждении от температуры отпуска дополнительным легированием сталей молибденом или вольфрамом в количестве 0,3 и 1 % соответственно.  [c.192]

На долю углеродистых сталей приходится 80 % от общего объема. Это объясняется тем, что углеродистые стали дешевы и сочетают удовлетворительные механические свойства с хорошей обрабатываемостью резанием и давлением. При одинаковом содержании углерода по обрабатываемости резанием и давлением они значительно превосходят легированные стали. Однако углеродистые стали менее технологичны при термической обработке. Из-за высокой критической скорости закалки углеродистые стали охлаждают в воде, что вызывает значительные деформации и коробление деталей. Кроме того, для получения одинаковой прочности с легированными сталями их следует подвергать отпуску при более низкой температуре, поэтому они сохраняют более высокие закалочные напряжения, снижающие конструкционную прочность.  [c.243]

Обрабатываемость в горячем и холодном состоянии. Пластичность в горячем состоянии нелегированных сталей не намного хуже, чем конструкционных сталей. Стали, содержащие 1,2—1,3% углерода, уже меньше поддаются деформации. С повышением температуры нагрева примерно до 1200° С пластичность сталей возрастает. Верхний предел температуры деформации ограничивается опасностью окисления. Пластичность легированных теплостойких сталей растет только до 1150—1180° С. Карбиды карбидообразующих легирующих, . находящихся в растворе, при охлаждении во время деформации в большинстве случаев выделяются на границах аустенитных зерен, что значительно ухудшает пластичность стали. Поэтому температуру деформации теплостойких сталей доводят не более чем до 1100—> 1150° С.  [c.75]


Сг, широко применяемый для легирования (в конструкционных сталях до 3% Сг), повышает твердость и прочность стали при одновременном незначительном понижении пластичности и вязкости. Присутствие Сг увеличивает прокаливаемость стали. Благодаря высокой износоустойчивости хромистой стали из нее изготовляют подшипники качения. Сг вводится в состав быстрорежущей стали. При содержании свыше 13% Сг сталь становится нержавеющей. Дальнейшее увеличение содержания Сг придает стали анти коррозионность при высоких температурах, а также магнитоустойчивость.  [c.155]

Аппаратура и методика работы Испытанию подвергаются по два замаркирсванных образца из углеродистых конструкционной и инструментальноР, сталей и легированной жаростойкой стали при температурах 400 С. 600 с. 800 С и 900 С. Нагрев и выдержку испытуемых сталей проводят в уста-  [c.30]

Первые иеследования сталей, обработанных методом ВТМО, показали, что в результате данной обработки практически устраняется развитие обратимой отпускной хрупкости конструкционных легированных сталей в опасном в этом отношении интервале температур отпуска [16, 70, 88, 89], резко повышается  [c.53]

В отличие от НТМО, ВТМО не требует прессового оборудования большой мощности. Однако существенным недостатком ВТМО являются определенные технологические трудности, связанные с необходимостью во многих случаях подавлять процесс рекристаллизации [161]. Так, проведение ВТМО конструкционных легированных сталей в условиях прокатки при температуре 800—1100° возможно только на сечениях толщиной около 10 ММ] дальнейшее увеличение толшины заготовок приводит к развитию процесса рекристаллизации и к снятию эффекта упрочнения. В то же время одним из перспективных направлений в использовании ВТМО является аналогичная по технологии обработка поверхностных слоев изделий [131, 132] поверхность детали или отдельные ее участки (в особенности в местах концентрации напряжений) могут быть упрочнены в результате локального екоростного индукционного нагрева токами высокой частоты, совмещаемого с последующей местной пластической деформацией и закалкой [161].  [c.79]

Производство тугоплавких металлов (молибдена, ниобия, вольфрама, тантала и др.) неуклонно расширяется. Если 10—15 лет назад эти металлы находили применение в основном как лигатуры при выплавке различных сталей и сплавов, а также в качестве нагревательных элементов, то сейчас они находят применение и как конструкционные материалы. Основным преимуществом этих материалов является высокая температура плавления, вследствие чего данные металлы способны показывать более высокие значения прочности, чем легированные стали при тех же рабочих температурах конструкции. Так, 100-часовая длительная прочность нелегированного наклепанного молибдена при 980 " С равна 15,5 кПмм , легированного 0,5% Ti—37,2 кПмм . В большинстве же случаев современные сверхпрочные сплавы имеют при тех же рабочих температурах длительную прочность, не превышающую 7 кПмм" [30].  [c.137]

Основные марки сталей, получившие применение в отечественных высокотемпературных установках для сварных узлов различного назначения, приведены в табл. 7. Предельные температуры их использования установлены с учетом возможной эксплуатации и в условиях ползучести. В указанную номенклатуру входят малоуглеродистые стали и сравнительно слабо легированные кремнемарганцовистые стали. Для барабанов котлов высокого давления применяется более легированная сталь марки 16ГНМ. В данную таблицу не входят рассматриваемые в следующем параграфе теплоустойчивые хромомолибденовые стали, используемые в нефтехимических установках как конструкционный материал из-за повышенной водородоустойчивости.  [c.158]

Азотирование повышает теплостойкость конструкцион ных легированных сталей Например, рабочие температу ры азотируемых деталей из сталей 38Х2МЮА и 25Х2МФА составляют 400—490°С, а из сталей 25Х2М1Ф 490—510°С Однако при длительных выдержках в условиях высоких температур твердость азотированного слоя может сни жаться  [c.182]

Легированные стали практически сохраняют, а сталь 2Х18Н9 даже повышает пластические свойства при низких температурах. Сохраняют свои свойства медь, алюминий, латунь, дюралюминий. Наиболее распространенные в машиностроении углеродистые и малолегированные конструкционные стали, а также многие инструментальные стали при низких температурах становятся хрупкими.  [c.255]

Ж40НЗД2Х-66 То же Прессование прн давлении 7 т/см . Спекание в защитной среде при 980°С в течение 3 ч, подъем температуры до 1200°С, выдержка при 1200°С в течение 2—8 ч Средненагру-женные конструкционные детали, 0в = = 80 кгс/мм Конструкционные легированные стали  [c.67]

Литейные конструкционные стали особого качества применяют для изготовления отливок деталей, подвергающихся действию высоких температур (до 425° С) без ограничения давления. По химическому составу литейные стали разделяются на пизкоугле-родистыс, средпеуглеродистые и легированные. Легированные стали классифицируют по содержанию легирующих элементов, по микроструктуре и назначению.  [c.681]


Смотреть страницы где упоминается термин Легированная сталь конструкционная температурах : [c.151]    [c.10]    [c.113]    [c.480]    [c.112]    [c.42]    [c.198]    [c.214]    [c.180]    [c.378]    [c.405]    [c.107]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.321 , c.329 , c.343 , c.344 , c.346 , c.367 , c.374 , c.383 , c.392 , c.399 , c.400 ]



ПОИСК



Легированная конструкционная

Легированная сталь конструкционная

Легированная сталь конструкционная температур отпуска

СТАЛЬ 280 СТАЛЬ КОНСТРУКЦИОННАЯ

Сталь конструкционная

Сталь легированная

Сталь — Температуры

Сталя легированные



© 2025 Mash-xxl.info Реклама на сайте