Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Производство тугоплавких металлов

Так, по данным одного нз заводов по производству тугоплавких металлов от применения разработанной ВНИИЭТО методической вакуумной печи типа ОКБ-870 получается экономия около 180 000 руб. в год на одну печь.  [c.376]

Ряд новых металлургических процессов, нашедших впоследствии применение в производстве редких металлов, был разработан отечественными учеными еще в дореволюционной России. К ним относится способ порошковой металлургии (или металлокерамика), используемый для производства тугоплавких металлов вольфрама, молибдена, тантала и ниобия. Этот способ был разработан в 1826 г. русским металлургом П. Г. Соболевским применительно к получению изделий из платины.  [c.23]


В производстве тугоплавких металлов, таких как вольфрам и молибден, где требуется весьма высокая температура спекания (более 2000°С), широко используются так называемые сварочные аппараты (рис. 165). Нагрев осуществляется электрическим током, пропускаемым через спекаемое изделие, вертикально закрепленное между двумя зажимными контактами, состоящими  [c.335]

В последние годы в связи с развитием производства тугоплавких металлов и жаропрочных сплавов и сталей возникла необходимость в высокотемпературных источниках нагрева, способных в промышленных условиях обеспечивать температуры свыше 5500° С. Применявшиеся до сих пор источники нагрева (химическое пламя, обычная электрическая дуга) обладают температурой, не превышающей 2500—5500° С. Значительно более высокие температуры (9500° С и выше) можно получить при помощи плазменного нагрева.  [c.273]

Средствами порошковой металлургии решены проблемы промышленного производства тугоплавких металлов и сплавов, твердых сплавов, весьма чистых металлов, т. е. в таких областях техники, где плавление затруднено из-за высоких температур и неизбежного взаимодействия жидкого металла с огнеупорами и шлаком. Без особого труда можно получать практически любые желаемые композиции, в том числе из. взаимно несмешивающихся металлов или металлов с резко различными температурами плавления или удельными весами (вольфрам и медь, железо и свинец, железо № цинк и т. п.). Немалое значение имеют сплавы из металлов и неметаллов металлографитные соединения металлов с окислами, боридами, нитридами, алмазно-металлические металл—стекло и т. д.  [c.1471]

В связи с расширяющейся потребностью производство тугоплавких металлов буде развиваться, поскольку разведанные сырьевые ресурсы это позволяют.  [c.343]

Упрощенная схема производства тугоплавких металлов методом порошковой металлургии приведена на рис. 3- 1-1. Из руды химическими и физическими методами получают чистый металл в виде порошка, прессуют из него с помощью связующего вещества тело определенной формы, которое затем спекают в вакууме или в защитной атмосфере поэтому такие (Материалы называют спеченными или синтерированными.  [c.14]

Для производства отливок используются сплавы черных металлов серые, высокопрочные, ковкие и другие виды чугунов углеродистые и легированные стали сплавы цветных металлов медные (бронзы и латуни), цинковые, алюминиевые и магниевые сплавы сплавы тугоплавких металлов титановые, молибденовые, вольфрамовые и др.  [c.121]

Основными видами термической обработки являются отжиг и закалка. Операцию отжига используют для повышения технологических свойств при производства деталей из тугоплавких металлов. Отжиг снижает прочностные характеристики и в несколько раз повышает пластичность материала, что облегчает дальнейшую обработку давлением (ковка, протяжка, прокатка и т. д.). Наличие пор в материалах делает их чувствительными к окислению при нагреве и к коррозии при попадании закалочной жидкости в поры при закалке. В качестве охлаждающих сред необходимо выбирать жидкости, не представляющие опасности с точки зрения коррозии в процессе хранения и эксплуатации закаленных деталей. В некоторых случаях детали из железного порошка подвергают науглероживанию методами химикотермической обработки — нагреву в ящиках с карбюризатором или в газовой науглероживающей атмосфере. Процесс насыщения углеродом протекает значительно быстрее вследствие проникания газов внутрь пористого тела.  [c.425]


Медь и ее сплавы сваривают в очень небольших объемах, так как медь — дефицитный цветной металл. Сварные изделия из меди необходимы в электротехнической промышленности, в химическом, энергетическом и общем машиностроении. В последнее время непрерывно увеличивается производство сварных конструкций из титана и его сплавов, из алюминия и его сплавов, а также из тугоплавких металлов, таких как вольфрам и молибден.  [c.320]

Уровень развития техники токов высокой частоты позволяет использовать индукционный нагрев при тер.мической обработке проката в массовом производстве. Совершенствуются технологические режимы нагрева специальных сплавов и сталей, а также плавки активных и тугоплавких металлов. Разрабатываются методы плавки во взвешенном состоянии [35].  [c.125]

Легирование тантала и ниобия титаном особенно экономично, так как титан — самый дешевый из тугоплавких металлов (в 100 раз дешевле тантала) и самый легкий из них (плотность 4,5 г/см ). Кроме того, в отличие от других элементов (Мо, W или Zr) титан увеличивает пластичность Та и Nb. В связи с этим по принятой и описанной выше технологии производства ниобиевых сплавов был изготовлен и исследован тройной сплав Nb + + 20 ат.% Та + 7 ат.% Ti (Nb + 30 мас.% Та + 4 мас.% Ti). Предполагалось, что этот сплав по коррозионной стойкости будет мало отличаться от двой-  [c.84]

Развитие потребностей в пористых металлокерамических материалах в различных областях техники и производства, наряду с повышением требований к температурным пределам эксплуатации и коррозионной стойкости, вызывает необходимость использования для приготовления таких пористых материалов сферических частиц тугоплавких металлов и соединений типа карбидов, боридов, силицидов, нитридов.  [c.57]

Лигатуры широко применяются главным образом в производстве алюминиевых и магниевых сплавов. Это обусловливается тем, что данные сплавы резко окисляются при перегреве до температур выше 800 и в них нельзя вводить непосредственно тугоплавкие присадки [27]. Лигатуры должны обладать температурой плавления, близкой к температуре плавления металла, к которому они присаживаются, и в то же время иметь высокое содержание тугоплавкого металла. Лигатура, содержащая одну тугоплавкую примесь, называется двойной, а две — тройной. Характеристика различных двойных и тройных лигатур и способы их изготовления указаны в табл. 180 и 181.  [c.191]

Электрохимическая обработка проволоки из тугоплавких металлов применяется в производстве источников света для самых разнообразных целей — травления, очистки, полирования и оксидирования.  [c.190]

Динамичное развитие порошковой металлургии объясняется тем, что она позволяет преодолевать технологические трудности изготовления изделий из тугоплавких металлов, создавать материалы с особыми, часто уникальными составами, структурой и свойствами, иногда вообще недостижимыми при применении других методов производства, либо с обычными физическими и механическими свойствами, но при Существенно лучших экономических показателях.  [c.7]

Тугоплавкие металлы взаимодействуют со многими другими металлами Периодической системы, образуя твердые растворы и различные интерметаллические соединения, что широко используется в технике при производстве различных сплавов и высококачественных сталей. Близость многих свойств тугоплавких металлов и их соединений определяет общность некоторых областей применения в электро- и  [c.151]

В табл. 22 в обобщенной форме приведена последовательность технологических операций при производстве материалов и изделий из порошков тугоплавких металлов различными технологическими процессами.  [c.152]

Первые попытки использования молибдена в металлургии стали относятся к концу прошлого столетия. Промышленное производство молибдена началось в 1909—1910 гг., когда были обнаружены особые свойства орудийных и броневых сталей, легированных этим металлом, а также была разработана технология получения компактных тугоплавких металлов методом порошковой металлургии.  [c.424]


Производство тугоплавких металлов (молибдена, ниобия, вольфрама, тантала и др.) неуклонно расширяется. Если 10—15 лет назад эти металлы находили применение в основном как лигатуры при выплавке различных сталей и сплавов, а также в качестве нагревательных элементов, то сейчас они находят применение и как конструкционные материалы. Основным преимуществом этих материалов является высокая температура плавления, вследствие чего данные металлы способны показывать более высокие значения прочности, чем легированные стали при тех же рабочих температурах конструкции. Так, 100-часовая длительная прочность нелегированного наклепанного молибдена при 980 " С равна 15,5 кПмм , легированного 0,5% Ti—37,2 кПмм . В большинстве же случаев современные сверхпрочные сплавы имеют при тех же рабочих температурах длительную прочность, не превышающую 7 кПмм" [30].  [c.137]

Наибольшим распространением пользуются электропечи сопротивления с вихромо-ными, молибденовыми, силитовыми и тому подобными нагревателями. В качестве элементов сопротивления часто используют графитовые трубы (вапример, в промыш-ленеости твердых сплавов) или даже самую спекаем- ю заготовку (в производстве тугоплавких металлов). Вполне воз.можно также применение индукционного вагрева.  [c.973]

В нашей стране развитие порошковой металлургии началось фактически после победы Великой Октябрьской социалистической революции и неразрывно связано с организацией производства редких металлов. В 1918 г. на втором заседании Горного Совета при ВСИХ рассматривался вопрос о добыче вольфрама и молибдена, а при Главхиме ВСНХ была организована Комиссия по редким металлам, превратившаяся в 1921 г. в Бю-рэл — научно-техническое бюро по промышленному применению редких элементов. Исследования Бюрэл послужили основой создания в СССР с применением методов порошковой металлургии промышленного производства тугоплавких металлов, твердых сплавов и тугоплавких соединений редких металлов. Освоение технологии изготовления различных порошков дало толчок развитию работ в области производства спеченных изделий конструкционного назначения. Помимо технологических разработок, были проведены обширные исследования в области создания научных основ порошкового металловедения и порошковой металлургии.  [c.7]

К физико-хниическим способам получения порошков относят восстановление оксидов, осаждение металлического порошка из водного раствора соли и др. Получение порошка связано с изменением химического состава исходного сырья или его состояния в результате химического или физического (но не механического) воздействия па исходный продукт. Физико-химические способы получения порошков в целом более универсальны, чем механические. Возможность использования дешевого сырья (отходы производства в виде окалины, оксидов и т. д.) делает многие физико-химические способы экономичными. Порошки ряда тугоплавких металлов, а такуке порошки сплавов и соединений на их основе могут быть получены только физико-химическими способами.  [c.419]

Титан в настоящее время получается методами порошковой металлургии в небольших масштабах по сравнению с методами дугового плавления (см. стр. 576—577, табл. 3 и 4). Цирконий и его сплавы с оловом, полученные методами порошковой металлургии, содержат повышенное количество кислорода и азота и не обладают той высокой коррозионной стойкостью, какую имеют сплавы, полученные дуговым плавлением. Методы порошковой металлургии применяются наряду с другими методами для производства заготовок и изделий из тория, ванадия и бериллия. Более подробные сведения о редких и тугоплавких металлах см. в гл. VIII Редкие металлы и их сплавы и X Титан и его сплавы .  [c.598]

Для получения покрытия на основе алюминидов никеля, легированного тугоплавкими металлами, была разработана технология производства никель-алюминиевого порошка НА67Л путем совместного осаждения никеля, кобальта, хрома, молибдена и вольфрама на частицы алюминиевого порошка АСД-1Н.  [c.112]

Металлические матрицы. Перспективные разработки многих лабораторий направлены на то, чтобы в качестве матриц использовать алюминий, магний, титан, никель и тугоплавкие металлы. Методом пронитки волокон магниевыми сплавами были получены конструкционные детали промышленного назначения. Однако значительный успех достигнут при разработке боралюмпння. В 1971 г. было получено приблизительно 450 кг боралюминия. В настоятцее время проводятся исследования композициоппого материала алюминий — углеродное волокно, но пока нет его промышленного производства.  [c.90]

Развитие атомной, реактивной и ракетной техники, приборостроения и повышение рабочих параметров машин — усилий, напряжений, скоростей, давлений, температур — весьма сильно стимулировало развитие ковки и штамповки в послевоенный период. Главнейшая задача кузнечно-штамповочного производства состояла в разработке новых технологических ироцес-сов обработки давлением жаропрочных сплавов, новых более сложных высокопрочных сплавов на основе тугоплавких металлов. Так, в 1945 г. был впервые изготовлен жаропрочный сплав (на железной основе) отечественной марки ЭИ-388.  [c.110]

Нельзя не отметить большой работы по модернизации кузнечно-прессовых машин, по разработке и внедрению в производство новых типов. Так, внедрение импульсной, взрывной, беспрессовой штамповки стимулировало разработку соответствующих машинных установок. Созданы установки со взрывом в воде, в вакууме, электроразрядные установки в воде, взрывные со смесью газов. Особое место занимают импульсные установки с сильными магнитными полями. Для штамповки деталей из жаропрочных сплавов и тугоплавких металлов потребовались кузнечно-прессовые машины высоких энергий типа высокоскоростных молотов со скоростями удара 30—50 м сек и со встречным движением рабочих частей, устраняющим действие удара на фундамент. Ведутся разработки штамповочных гидравлических прессов нового типа динамического действия с большой энергоемкостью. Парк кузнечно-прессовых мапшн пополнился уникальными мощными ттамповочны- , ми гидравлическими прессами с усилием до 75 тыс. т. Проводятся боль- пше работы но виброизоляцпи фундаментов паро-воздушных молотов с целью устранения ударного воздействия на грунт при их работе. Вподряются в производство мощные одноцилиндровые гидравлические малогабаритные прессы с усилием До 30 тыс. т для штамповки с высоким давлением рабочей жидкости (до 1000 атм.)  [c.112]


Винтер [147] запатентовал метод получения таких тугоплавких металлов в реакторе, как титап или цирконий, восстановлением летучих галоидных соединений этих металлов металлом-восстановителем, особенно магнием. Он также сделал заявку на -оригинальный метод производства ниобия, гафния, молибдена, тантала и вольфрама с применением в качестве восстановителей кальция, бария, стронция, натрия, калия и лития.  [c.935]

Молибден (Мо)—тугоплавкий металл. Открыт в 1778 г. К. В. Шееле. Порядковый номер 42, атомная масса 95,95, плотность 10,3 г/см температура плавления 2620 + 40° С, температура кипения 4800 + 40° С. Кларк молибдена 3- Основной источник получения — молибденит M0S2. Около 90% молибдена используется для производства сталей и сплавов. Соединения молибдена применяют в химической промышленности.  [c.197]

Начало промышленного производства ферросплавов относится к 60-м годам XIX в., когда во Франции была освоена технология восстановительной плавки в тигельных печах. В последующем некоторое развитие получила выплавка ферросплавов в доменных печах, однако недостаточно высокая температура этпх процессов не позволяла производить высокопроцентные сплавы и сплавы тугоплавких металлов. Это затруднение было устранено в дальнейшем путем использования электротермии. Основоположником электротермии был русский ученый  [c.5]

Электронно-лучевой переплав на холодном поду. Задача процесса применительно к суперсплавам заключается в дополнительной очистке от примесных химических элементов и снижении загрязненности неметаллическими включениями. Сначала электронно-лучевую плавку под вакуумом применяли при капельном оплавлении и литье тугоплавких металлов. Первые усилия по применению этого метода для производства суперсплавов дали неудовлетворительные результаты, так как в слиток попадали неоплавленные компоненты шихтовых материалов. Процесс электронно-лучевого переплава на холодном поду был разработан с цедью разрешения этих затруднений. Первая крупномасштабная установка построена в начале 1960-х гг., но применяли ее от случая к случаю и главным образом для обработки титана [8]. Позднее построили две новых крупных установки, и хотя их по-прежнему используют при производстве титановых материалов, можно с их помощью рафинировать и суперсплавы. Однако применительно к суперсплавам этот процесс все еще носит характер разработок.  [c.147]


Смотреть страницы где упоминается термин Производство тугоплавких металлов : [c.532]    [c.560]    [c.370]    [c.16]    [c.357]    [c.416]    [c.298]    [c.7]    [c.8]    [c.269]    [c.391]    [c.151]    [c.148]    [c.114]    [c.254]    [c.224]    [c.154]   
Смотреть главы в:

Новые материалы в технике  -> Производство тугоплавких металлов



ПОИСК



Металлургия и технология производства тугоплавких металлов

Металлы производство

Металлы тугоплавкие

Производство слитков и изделий из тугоплавких металлов и сплавов

Тугоплавкие металлы производство слитков



© 2025 Mash-xxl.info Реклама на сайте