Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение термических характеристик

Известей также способ определения термических характеристик брызгальных бассейнов, заключающийся в исследовании трех брызгальных уста-  [c.61]

В строительной практике расчет плоского стационарного температурного поля с различной интенсивностью теплового потока является довольно распространенной задачей. Эта задача охватывает, кроме упомянутого выше, определение температурного поля таких элементов, как углы, оконные откосы, а также определение термических характеристик неоднородных элементов ограждений, например, различного рода камней, сложных кладок и др.  [c.71]


Определение термических характеристик  [c.439]

К а н т е р К- Р- Об одном методе мгновенного источника тепла для определения термических характеристик. — ЖТФ, т. XXV, вып. 3, 1955, с. 472—477.  [c.218]

Числом твердости можно пользоваться в производственных условиях для определения механических характеристик материала. Так, по числу твердости можно с достаточной степенью точности определить предел текучести, временное сопротивление и предел упругости. Для углеродистой термически не обработанной стали связь между числом твердости и временным сопротивлением может быть выражена следующей зависимостью  [c.138]

Определение теплофизических характеристик рассматриваемых нами покрытий связано с двумя основными трудностями. Во-первых, число известных методов для определения теплофизических коэффициентов тонких слоев (толщина в десятые и сотые доли миллиметра) весьма ограниченно. Это объясняется те.м, что в ряде случаев требуется точное измерение температуры внутри образца, как правило, в двух точках. Такие измерения, естественно, не удается осуществить в тонких пленках, так как при незначительной толщине исследуемого слоя его термическое сопротивление оказывается соизмеримым с термическим сопротивлением контактов термопар, что приводит к большим неточностям при абсолютных измерениях.  [c.122]

Рассмотрим два случая определения энтропии процесса нагревания модельных образцов по экспериментальным термическим характеристикам.  [c.150]

Изложены современные методы расчета и оптимизации параметров термоизоляции энергетических установок при стационарном и нестационарном режимах работы применительно к корпусам паровых и газовых турбин энергоблоков, трубопроводам теплотрасс и паропроводам, котельным и печным агрегатам. Рассмотрены теплоизоляционные конструкции с теплопроводными включениями и разнородными анизотропными материалами. Получены оценки для эффективных значений теплофизических характеристик термоизоляции из композиционных материалов различной структуры. Проведен учет зависимости теплофизических характеристик материалов от температуры и предложен приближенный метод определения термического сопротивления теплоизоляционных конструкций сложной формы с контролем погрешности расчета.  [c.2]

Многие развиваемые в настоящее время прогрессивные методы комплексного определения теплофизических характеристик материалов, базирующиеся на научной теории тепло- и массообмена, основаны на закономерностях нестационарного температурного поля. Разумеется, применение дифференциального уравнения теплопроводности с постоянными теплофизическими коэффициентами для раскрытия механизма тепло- и массообмена в материалах, подвергаемых термической обработке, в некоторых случаях может привести к значительным ошибкам. Исключительная трудность аналитического решения задач нестационарного тепло- и массообмена в телах с переменными теплофизическими коэффициентами известными классическими методами приводит к необходимости применения приближенных аналитических и графоаналитических методов.  [c.183]


При отборе в приведенной последовательности устанавливают возможность применения способа для конструктивно-технологической группы с определенными размерными характеристиками возможность применения покрытия для материала основной детали и сочетаемость наносимого покрытия с материалом сопрягаемой детали возможность обеспечения заданной толщины покрытия для компенсации износа и необходимого припуска на последующую обработку необходимость и возможность предварительной обработки вид механической и финишной обработки и достигаемую точность и шероховатость достигаемую твердость поверхности после нанесения покрытия, необходимость термической обработки и ее вид достигаемую износостойкость при работе с сопрягаемой деталью сплошность покрытия прочность сцепления снижение сопротивления усталости стабильность получения заданных показателей.  [c.76]

Диаграмма состояния Hg—S (рис. 514) построена на основании (результатов дифференциального термического и рентгеновского анализов и определения термодинамических характеристик [1]. При исследовании использовали Hg и S чистотой 99,999 % (по массе).  [c.951]

Настоящий обзор подтверждает, что композиционные материалы, состоящие из жаропрочного сплава и тугоплавкой проволоки, характеризуются достаточно высокими значениями прочности и сопротивлением удару, что обусловливает значительные потенциальные возмон иости их использования для усовершенствованных лопаток газовых турбин. Полученные данные также указывают на потенциальную возможность увеличения рабочих температур материалов лопаток турбин до 1200° С и выше. Однако до сих пор получено небольшое число данных по окислению, эрозии и сопротивлению термической и механической усталости композиционных материалов. Необходимы дополнительные испытания для определения служебных характеристик композиций жаропрочный сплав — тугоплавкая проволока при всех условиях воздействия среды и нагружения. Легко воспроизводимые хорошие механические свойства и высокие потенциальные возможности увеличения долговечности работы турбин обосновывают необходимость дальнейших работ по всесторонней оценке свойств этих материалов. Может быть сделан ряд выводов,  [c.273]

Мы продолжаем придерживаться того мнения, что определенные нами характеристики пластичности присущи металлу корпуса реактора изначально и обусловлены сложностью и особенностями осуществления процесса термической обработки такой крупной поковки, какой является корпус реактора. Различие в значениях показателей пластичности связано также с разными местами отбора проб для их определения.  [c.103]

Определение твердости применяется в большинстве случаев для оценки сопротивления образцов и деталей пластическому деформированию на поверхности или по сечению. Это испытание служит для контроля термической обработки металлов, а также для определения основных характеристик механических свойств путем пересчета получаемых чисел твердости по эмпирическим формулам.  [c.7]

Следует, однако, иметь в виду, что в выполненных расчетах не учитывалась термическая диффузия при вдуве инородных газов. Поэтому неизвестна погрешность определения выходных характеристик пограничного слоя. Имеющиеся данные по влиянию термической диффузии на равновесную температуру стенки при вдуве инородных газов в ламинарный пограничный слой показывают, что это влияние весьма существенно.  [c.294]

Данные по теплоемкостям широко используют также и при исследовании растворов. Во многих работах, посвященных изучению свойств растворов, делают попытки установить связь между термическими характеристиками, в частности теплоемкостью и другими свойствами, например структурой растворов [22, 23]. При изучении растворов теплоемкость нередко выражают в виде парциальных величин, т. е. рассматривают раздельно теплоемкости растворителя и растворенного вещества (см. гл. 15). В некоторых случаях при определенных допущениях, например допущении равенства парциальных теплоемкостей гидратированных ионов К+ и С1 , имеющих примерно одинаковые размеры, переходят к парциальным теплоемкостям отдельных ионов в растворе [23].  [c.248]


Обычно нормируемая предельная величина дополнительной усадки при Температурах от 1350 до 1600° С лежит в пределах десятых долей процента. Рост нормируется лишь для динасовых огнеупоров. Температура деформации под нагрузкой огнеупоров имеет существенное значение в тех случаях, когда срок службы длителен, а статические нагрузки на огнеупор значительны. Эта температура измеряется при нагрузке 2 кгс/см для различных степеней деформации. За точку начала принимается сжатие образца на 0,6%. Термическая стойкость огнеупорных изделий определяется по стандарту путем одностороннего нагрева образцов при 1300° С и охлаждения в воде, причем норма устанавливается по количеству теплосмен, выдерживаемых образцом до потери веса 20%. Приводимые в справочнике величины относятся именно к этому методу определения термической стойкости, кроме специально оговоренных случаев. Огнеупоры в службе большей частью испытывают температурные колебания, нередко довольно резкие, поэтому термической стойкости при выборе огнеупора следует придавать большое значение. Имеется еще ряд технических характеристик огнеупорных изделий, не нормируемых действующими ГОСТами и ТУ шлакоустойчивость, теплопроводность, теплоемкость, ранее упоминавшаяся газопроницаемость и некоторые другие. Определение этих показателей выполняется институтами и заводскими лабораториями в ходе исследовательских работ или по отдельным заданиям. Кроме химических и физико-механических показателей свойств огнеупоров, для изделий устанавливаются допустимые предельные отклонения размеров, дефекты внешнего вида и структуры. В связи с выходом в 1975 г. официального сборника стандартов Огнеупоры и огнеупорные изделия в настоящем справочнике помещены только основные сведения из ГОСТов без данных о рме и размерах, которые при необходимости следует брать из действующих стандартов.  [c.13]

Если слоистая оболочка изогнута в одном или в обоих направлениях, то для определения механических характеристик материала следует предусматривать изготовление плоских образ-цов-свидетелей, которые изготовлены по тому же технологическому режиму и прошли ту же термическую обработку, что и сама оболочка.  [c.26]

Задача экспериментальной программы сводилась к определению термического сопротивления контакта в вакууме для соединений с поверхностями, имеющими отклонения от плоскостности, при малых усилиях сжатия р= (0,2н-2,4) н1м . Исследованиям подвергались образцы из магния н алюминия с поверхностями, характеристики которы.ч приведены в табл. 1-1.  [c.23]

Характер формирования температурных полей к теле определяется интенсивностью теплообмена его с окружающей средой. В любом случае тело отделено от среды некоторым пограничным слоем, представляющим определенное термическое сопротивление, которое ухудшает условия теплообмена. Контактные термические сопротивления наблюдаются также при соприкосновении тел с одинаковыми или различными теплофизическими свойствами. Следствием этого является невыполнение в эксперименте теоретически постулированных граничных условий первого и четвертого рода. Точность определения теплофизических характеристик во многом определяется соотношением между термическим сопротивлением исследуемого объекта и контактным термическим сопротивлением. Чем выше это отношение, тем точнее при прочих равных условиях будут опре-делены теплофизические свойства тела. При одних и тех же размерах тел и условиях сопряжения с окружающей средой это отношение будет больше всегда для плохих проводников тепла по сравнению с хорошими проводниками тепла, например металлами. Сущность различных способов уменьшения термических сопротивлений в основном сводится к тщательной обработке соприкасающихся поверхностей и замене всегда остающейся газовой прослойки более проводящим веществом, например жидкостью.  [c.36]

Помимо рассмотренных и ряда не нашедших освещения в данной главе приборов, аппаратов, установок и методов, применяемых при изучении различных видов эрозионного разрушения, существует еще множество косвенных методов, использующих оригинальную аппаратуру для установления характеристик металлов и среды в процессе эрозии. Сюда относятся установки и методы испытания на термическую усталость очень широкий класс приборов и установок для определения прочностных характеристик металлов и сплавов при высоких и сверхвысоких температурах разнообразная аппаратура для определения теплофизических констант металлов, особенно при высоких температурах методы определения прочности сцепления эрозионно-стойкого покрытия с основным металлом высокочастотная аппаратура для получения весьма высоких температур аппаратура для изучения свойств материалов в вакууме и при сверхвысоких давлениях различные установки для изучения гидродинамических, газодинамических и электродинамических процессов и многое, многое другое.  [c.130]

Комплекс используемых методов определения эксплуатационных характеристик модельных композиций (линейной усадки, предела прочности на изгиб, твердости, термического линейного расширения, стойкости модельных композиций к деформации, текучести по длине спирали или цилиндрического ступенчатого образца, содержания воздуха, стойкости композиции к взаимодействию со связующим раствором и др.) описан в работах [5, 6].  [c.225]

Каганов М. А. К вопросу об использовании метода мпно-венного источника тепла для определения термических характеристик теплоизоляторов. — Журнал техн. физики , 11956, т. 26, вып. 3, с. 676—677.  [c.247]

При определенном соотношении между никелем и железом магни-тострикция и анизотропия сплава переходят через нуль, и сплав приобретает высокую магнитную проницаемость. Это используется в пермаллоях по содержанию никеля сплавы в основном делятся на две группы . высоконикелевые — с содержанием никеля 78,5% и низконикелевые с содержанием никеля до 50%. Низконикелевые пермаллои при 50% Ni имеют до 4000 р.г ах До 45000 индукция достигает 1,5 тл, р = 45-10" ом-см. Удельное сопротивление при введении Si молено повысить до 90 -10" ом-см, но ири этом снилеается индукция Bs = 1,0 тл. Указанные характеристики обеспечиваются лишь ири определенной термической обработке. Высоконикелевые пермаллои помимо Ni (72—80%) содерлеат таюке легирующие добавки  [c.236]


При выборе материалов конструкций необходимо учитывать следующие факторы 1) экономические аспекты, связанные с общим ресурсом работы, и их взаимодействие 2) обрабатываемость материала, позволяющую изготовить деталь требуемой формы или конструкции 3) наличие материала нужной формы и размеров 4) состав композиций и возможность определения требуемых характеристик 5) объем предполагаемой продукции 6) производственный процесс, требования к механической обработке, сборке и инструменту 7) статические и усталостные свойства 8) характеристики пластичности материала 9) сопротивление воздействию окружающей среды 10) противоударные свойства и сопротивление вандализму 11) термическое расширение и теплоизоляционные свойства 12) проблемы безопасности при изготовлении и применении изделия 13) установленные нормативы 14) предварительные капиталовложения, расходы на проведение экспериментов 15) наличие естественных сырьевых ресурсов 16) возможность вторичного использования отходов 17) легкость транспортировки материалов и изделий 18) корпоративную и частную инициативу 19) глобальные факторы международные, государственные, политические и коммерческие.  [c.495]

Определение термических сопротивлений неоднородных по структуре ограждений приведено в [17, 19]. Теплотехнические характеристики некогорых конструкций наружных строительных ограждений даны в табл. 5.8, 5.9. Обмер поверхностей ограждения f при определении тепловых потерь производится в соответствии с рис. 5.1.  [c.370]

При таком подходе к задаче представляется возможным значительно повысить точность численного определения различных характеристик излучения без увеличения числа зон, в то время как при чисто зональном методе это может быть достигнуто только за счет увеличения числа зон. В этом отношении весьма интересными и перспективными представляются работы В. Н. Адрианова [3, 4],. в которых показана возможность повышения точности расчета локальных и усредненных характеристик радиационного теплообмена путем учета с помощью коэффициентов распределения оптических и термических неоднородностей внутри зо%. Более полное использование математического обеспечения современных ЭВМ возможно, как показал С. Д. Детков [19], при матричном способе решения систем зональных уравнений радиационного теплообмена.  [c.206]

Хотя образец для испытания на расслоение у свободной кромки с инициирующей трещиной и обеспечивает разрушение по механизму типа I, обработка экспериментальных данных становится довольно трудоемкой из-за остаточных технологических напряжений. Причем эти напряжения могут быть весьма значительными [36, 39]. В частности, уравнение (73) для учета начальных напряжений должно быть модифицировано. Для применения модифицированной схемы обработки требуется знание коэффициентов теплового расширения отдельных слоев и исходной температуры, сответству-ющей ненагруженному состоянию. Определение последней характеристики может представить значительные трудности. Для слоистых композитов, у которых в срединной плоскости у свободной кромки развивается межслойное растяжение, остаточные напряжения в результате термической усадки приводят к появлению направленной наружу начальной кривизны вдоль свободных кромок, как показано на рис. 4.37. Несимметричность слоистого пакета выше и ниже срединной линии является причиной появления кривизны. Межслойное растягивающее напряжение в вершине трещины зависит от начальной кривизны.  [c.241]

Изложены методы расчета и оптимизации параметров термоизоляции энергетических установок (паровых и газовых турбин, котельных и печных агрегатов, паропроводов и др.) при стационарном и нестационарном режимах работы. Рассмотрены теплоизоляционные конструкции с теплопроводными включениями и разнородными анизотропными материалами. Даны оценки эффективных значений теплофизических характеристик термоизоляции из композицкГон-ных материалов различной структуры. Предложен приближенный метод определения термического сопротивления теплоизоляционных конструкций сложной формы.  [c.192]

Предположение о том, что нарушения кристаллической решетки, создаваемые активирующей примесью, должны играть существенную роль в образовании электронных уровней захвата, в самой общей форме высказывалос ранее рядом авторов [319—3211. Однако только проведенные в последние годы комплексные исследования изменений, возникающих в спектрах поглощения и люминесценции щелочно-галоидных кристаллофосфоров под действием рентгеновых лучей и при аддитивном окрашивании, изучение их термического высвечивания и других оптических и термических характеристик центров свечения и центров захвата приводят к определенным представлениям о механизме явлений, связанных с переходом активирующей примеси из ионного состояния в атомарное. Полученные данные позволяют также высказать обоснованные предположения о структуре активаторных центров свечения и активаторных центров захвата.  [c.226]

В работах Г. С. Писаренко и его сотрудников разрабатывались вопросы, связанные с методикой и средствами определения различных характеристик материалов при высоких и низких температурах (1958 и сл.). Выяснению сложных закономерностей механической и термической прочности в широком диапазоне режимов нагрун гения и нагрева посвя-ш,ены работы И. А. Одинга (1945—1962), С. В. Серенсена (1950 и сл.), Я. Б. Фридмана (1952—1962) и их сотрудников.  [c.415]

Условия пластичности Сен-Венана и Губер-Мизеса справедливы. однако, только для некоторых чистых металлов с простейшим строением атомно-кристаллической решетки и мягких отожженных сталей (см. гл. I), Пределы текучести нри кручении других металлических материалов, как это следует из экспериментальных определений этой характеристики, произведенных, в частности, С. Т. Кигакиным и С. И. Ратнер [83], могут значительно отк, 1оняться от приведенных теоретических соотношений как в большую, так и в мепьшую сторону. Фактически, в зависимости от структуры металла (его кристаллической решетки, состава, режима термической обработки), отношение условного (расчетного) предела текучести То,з к (Ти,2 Для различных металлических материалов колеблется в пределах 0.25 0,84, а отношение истинного предела текучести при кручении о,з к ао,а — в пределах 0,25 0,74. Для высокопрочных сталей, деформируемых алюминиевых сплавов, магниевых сплавов, бронзы отклонения от теоретического соотношения достигают 30—40%. У конструкционных сталей с метастабильной структурой (пониженные  [c.65]

Основой для расчетов нагрева и плавления металла при сварке служат уравнения, полученные в главе XVII. Их используют для качественной оценки температурных полей, а также для количественных расчетов при определении термических циклов сварки, скоростей охлаждения, размеров зон термического влияния и т. д. Следует заметить, что в ряде случаев процессы и явления протекают фактически сложнее, чем это описывается формулами. Тогда прибегают к непосредственному экспериментальному определению величин путем термографирования, калориметрирования или измерения размеров зон. Используют также ряд технических характеристик, отражающих производительность процессов и свойства сварочных электродов.  [c.455]


Смотреть страницы где упоминается термин Определение термических характеристик : [c.150]    [c.75]    [c.18]    [c.331]    [c.156]    [c.319]    [c.175]    [c.322]    [c.249]    [c.217]    [c.249]    [c.217]   
Смотреть главы в:

Справочник по электротехническим материалам Т2  -> Определение термических характеристик



ПОИСК



141 —149 — Определение характеристика

Проволока пружинная термически обработанная холоднодеформированная — Материал для изготовления — Отпуск 201 Характеристики механических свойств 199 Прокаливаемое» стали 313 Способы определения

Способ определения термических характеристик брызгальных бассейнов

Термическая характеристика сма



© 2025 Mash-xxl.info Реклама на сайте