Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термореактивные смолы и пластмассы

Смолы и пластмассы, отвердевающие при нагреве во время прессования, сохраняющие в горячем состоянии приданную им форму и извлекаемые из пресс-форм без охлаждения, называются термореактивными. Смолы и пластмассы, не затвердевающие при длительном нагреве, способные к изменению формы при повторном воздействии высокой температуры и давления, называются термопластичными.  [c.61]

Этн пластмассы можно сплавлять и получать соединения, содержащие термопластичные и термореактивные смолы и обладающие некоторыми свойствами каждой из них. Ниже дано сравнение свойств пластмасс и металлов, которое может помочь конструктору при выборе материалов для изделия.  [c.89]


Свойства термореактивных отвержденных смол и пластмасс представлены в табл. 3.9.  [c.175]

Композиционные порошкообразные и волокнистые пластмассы представляют собой композиции преимущественно на основе термореактивных смол и наполнителей древесной муки, слюды, кварца и волокон растительного и минерального происхождения. Они применяются преимущественно для изготовления сравнительно небольших деталей методом горячего прессования. Слоистые пластики представляют собой композиции, состоящие из смолы и слоистого наполнителя (хлопчатобумажная, асбестовая, стеклянная, ткани, бумага и древесный шпон). Они применяются для изготовления деталей различных размеров, плит, труб и заготовок путём прессования или методом механической обработки.  [c.295]

В термореактивных же смолах и пластмассах молекулы связующего вещества способны к взаимодействию с соседними, и образованию при нагреве и полимеризации пространственной структуры, т. е. росту молекулы не в одном, а в трех направлениях. Это придает таким смолам большую нагревостойкость и жесткость. По происхождению смолы делятся на природные и синтетические.  [c.61]

Слоистые пластмассы представляют собой композиции из термореактивных смол и соответствующего наполнителя у гетинакса — бумага, у текстолита — легкая хлопчатобумажная ткань, у стеклотекстолита — бесщелочная стеклоткань, у асботекстолита — асбестовая ткань, у дельта-древесины — тонкий березовый шпон толщиной 0,25—0,55 мм.  [c.238]

Композиционные порошкообразные и волокнистые пластмассы изготовляются преимущественно на основе термореактивных смол и наполнителей древесной муки, слюды, кварца и волокон растительного и минерального происхождения. Они применяются главным образом для изготовления сравнительно небольших деталей метолом горячего прессования.  [c.337]

Клеи на основе феноло-формальдегидных смол ВИАМ-БЗ и КБ-3 широко применяют для склеивания пенопластов. Кроме того, клеем ВИАМ-БЗ склеивают изделия из слоистых и волокнистых пластмасс или пресспорошков на основе термореактивных смол. Склеивание деталей из термопластичных материалов производят клеями специального назначения. Часто склеивание осуществляют растворителем, вызывающим набухание поверхности пластмассы, что придает ей клейкость, необходимую для осуществления соединения.  [c.407]

К первой группе материалов относятся графит, различные текстолиты с высоким содержанием смолы и термореактивные пластмассы, ко второй — стеклопластик, кварцевое стекло и различные силикаты, а к третьей — вещества с достаточно высокими теплотой сублимации и массовой ско-ростью уноса.  [c.225]


Характер применяемой смолы и наполнителей определяет основные свойства пластмасс электроизоляционные, антифрикционные, водостойкие, фрикционные и т. п. В зависимости от типа применяемой смолы все пластмассы делятся на две группы термореактивные и термопластичные.  [c.42]

Наполнитель обеспечивает прочность материала и изменяет его свойства. К наиболее распространенным наполнителям относятся древесная или минеральная мука, асбестовое, хлопчатобумажное или другое органическое волокно, а также стеклянное волокно и различные ткани. Краситель придает пластмассе определенный устойчивый цвет. Отвердитель (инициатор) ускоряет переход термореактивных смол в неплавкое или нерастворимое состояние или отверждает некоторые термопластические смолы.  [c.493]

У большинства термореактивных смол изменения динамических величин при повышении температуры не так велики, как у термопластов, хотя в области размягчения тоже происходит у них снижение G или Е и повышение декремента затухания [3]. О значении показателей динамических свойств пластмасс, полученных измерением при действии слабой механической переменной нагрузки, будет сказано ниже.  [c.58]

Типичным примером зависимости ударной вязкости пластмассы от прочности являются армированные термореактивные смолы. Полиэфирные, эпоксидные, фенолформальдегидные и прочие термореактивные смолы — хрупкие аморфные полимеры. Благодаря присутствию армирующих наполнителей материал при нагрузке ударом обладает способностью гасить кинетическую энергию и несколько деформироваться за счет снижения силы сцепления между смолой и армирующими элементами.  [c.70]

Смола — связующее вещество — может быть как термореактивного, так и термопластичного типа. Она и определяет тип пластмассы и служит основным компонентом, соединяющим все остальные в однородный материал.  [c.297]

Слоистые пластмассы получают прессованием слоистых наполнителей (бумаги, ткани или шпона) с последующей обработкой термореактивными смолами. Пластики этой группы являются отличными диэлектриками они обладают высокими химической стойкостью, механической прочностью, почти не склонны к пластическим деформациям, очень чувствительны к ударам (кроме текстолита и СВАМ) характеризуются неоднородностью п анизотропностью (механические характеристики различны во взаимно-перпендикулярных направлениях). Свойства этой группы пластиков во многом зависят от наполнителя, его подготовки и соотношения наполнителя и связующего.  [c.310]

Термореактивные материалы состоят из синтетических смол и наполнителей, которые при нагревании претерпевают ряд химических изменений и отвердевают без последующего размягчения. Изделия из термореактивных пластмасс получают в пресс-формах, нагретых до температуры 130—150 °С. К таким материа-  [c.321]

Термореактивные материалы состоят из синтетических смол и наполнителей, которые при нагреве претерпевают ряд химических изменений и отвердевают без последующего размягчения. Изделия из термореактивных пластмасс получают в пресс-  [c.363]

Термореактивные смолы являются основой термореактивных пластмасс, которые обычно содержат различные наполнители. Поэтому смолы должны обладать высокой клеящей способностью, а также теплостойкостью, химической стойкостью, простотой переработки, небольшой усадкой. Температурные коэффициенты расширения смолы и наполнителя должны быть близки по величине.  [c.240]

Полимеры с ленточными и особенно с пространственными макромолекулами имеют повышенную тепловую и химическую стойкость. Образование подобной структуры и связанное с ним необратимое затвердевание материала протекает при участии химических реакций. Такие полимеры, а также пластмассы на их основе называют термореактивными (реактопласты). Перевести однажды затвердевшую термореактивную смолу в вязкотекучее или высокоэластичное со-  [c.144]

В термореактивных л<е смолах и пластмассах молекулы связующего вещества способны к взаимодействиям с соседними и образованию при нагреве, полпкондеисации и полимеризации, пространственной струк-  [c.63]

Карбамидными смолами называются термореактивные высокомолекулярные соединения, полученные при конденсации мочевины и ее производных — тиомо-чевины, дициандиамида, меламина и др. с формальдегидом. Физико-механические показатели карбамидных смол и пластмасс на их основе несколько ниже, чем у феноло-альдегидных. Однако они обладают существенными преимуществами, заключающимися в их способности окрашиваться в любой цвет, свето-и цветостойкости и отсутствии запаха. Промышленное значение получили главным образом мочевино- и меламино-формальдегидные смолы и пластмассы на их основе.  [c.156]


Изготовление и переработка прессматерналов с волокнистыми наполнителями (органическими и неорганическими) подобны производству и переработке прессматериалов с порошкообразными наполнителями. В качестве связующего вещества для пластмасс с волокнистыми наполнителями применяют термореактивные смолы феноло-формальдегидные (и их производные), амино-формальдегидные, полиэфирные, полисилоксановые и др.  [c.356]

Природные смолы и синтетические полимеры (высокомолекулярные соединения) применяют для получения электроизоляциопных лаков, эмалей, компаундов, пластмасс, пленочных, волокнистых и других материалов. Природные смолы и синтетические полимеры бывают термопластичные (после действия нагрева не теряют способности плавиться и растворяться в подходящих растворителях) и термореактивные (после нагрева становятся неплавкими и нерастворимыми). Синтетические полимеры получаются с помощью реакций двух типов  [c.549]

Особенности технологии изготовления изделий из пластмасс в основном определяются связующим. Е5 зависимости от вида связующего различают пластмассы горячей прессовки, требующие при прессовке нагрева, и пластмассы холодной прессовки, которые прессуются при нормальной температуре. Большинство электроизоляционных пластмасс с органическим связующим требует горячего прессования, эти пластмассы разделяются на термопластичные (термопласты) и термореактивные (реактопласты) ( 6-5). Связующие термопластичных масс горячего прессования сохраняют способность к повторному размягчению и растворению в тех или иных растворителях. Связующие в термореактивных пластмассах после воздействия нагрева во время прессования (или при последующей тепловой обработке) переходят в неплавкое и нерастворимое состояние, К термопластам принадлежат пластмассы на основе поливиниловых и полиамидных смол, эфиров целлюлозы и пр., а к реакто-пластам —пласт у. ассы на основе фенолформальдегид 1Ых, карба-мидных и других термореактивных смол.  [c.149]

Многие машиностроительные материалы представляют собой тот или иной вид композиционных материалов. Например, сталь подвергают окраске, чтобы увеличить стойкость к разрушительному действию коррозии. Стволы первых артиллерийских орудий изготовляли из дерева, а затем дерево скрепляли с латунью, чтобы повысить их стойкость к воздействию внутреннего давления. Прочность бетона повышается при использовании армируюш их стержней. Возникновение промышленности, производящей пластмассы, относят к 1868 г., когда Хайдтом был открыт целлулоид. Вслед за этим в 1909 г. Бикландом была получена фенолформальдегидная смола, в 1938 г. появился найлон. В 1942 г. впервые были изготовлены полиэфиры и полиэтилен. В 1947 г. появились эпоксидные смолы и полимеры на основе сополимера акрилонитрила, бутадиена и стирола [3]. В начале 50-х годов для защиты от коррозии стали использовать термореактивные пластмассы. В это же время началось впервые изготовление коррозионно-стойкого оборудования. Судостроительная промышленность явилась первым крупным потребителем и изготовителем армированных пластиков. Армированные пластики не получили бы такого широкого распространения, которое они имеют в настоящее время, не будь заинтересованности судостроительной промышленности. Долгое время отсутствовала информация об этих материалах, однако, в конечном счете, основные необходимые сведения об армированных пластиках как конструкционных материалах были получены от самих судостроителей.  [c.310]

В промышленной практике те или иные виды термореактивных пластмасс обычно обозначают, исходя нз наименования участвующей в их составе полимерной составляющей фенопласты (на основе феноло-альдегидных смол), аминопласты (на основе мочевино-, меламино-, анилино-формальдегидных смол), силикопласты (на основе кремнийорганических смол), эпоксипласты (на основе эпоксидных смол), полиэфиро-пласты (на основе полиэфирных смол) и т. д.  [c.12]

Пластические массы различают по их свойствам и методам переработки. По свойствам все пластмассы разделяются на две основные группы 1) термореактавные, в состав которых входят термореактивные связующие смолы, и 2) термопластические, в состав которых входят термопластические связующие смолы.  [c.677]

Антифрикционные пластмассы в узлах трения начали применять в тек-столитах термореактивных пластмассах на основе фенолформальдегнд-ных смол и хлопчатобумажных тканей. Текстолиты использованы для изготовления наборных подшипников скольжения для работы со смазыванием водой, а также для нарезания зубчатых колес и кулачковых передач. Позднее был освоен выпуск специальных антифрикционных реактопластов для подшипников, работающих без смазки. С появлением высокотехнологичных антифрикционных термопластичных полимеров антифрикционные реакто-пласты утратили ведущее положение. Однако когда к узлам предъявляют повышенные требования по жесткости, размерной стабильности и теплостойкости, пластмассы на основе термореактивных связующих применяют довольно широко, в частности в химическом и металлургическом оборудовании, водном и железнодорожном транспорте [9, 21 ].  [c.55]

Термореактивные материалы В 29 (способы и устройства для экструдирования С 47/(00-96) термореактивные смолы как формовочный материал К 101 10> Термостаты, использование для регулирования охлаждения двигателей F 01 Р 7/12 7/16 Термоформование изделий из пластических материалов В 29 С 51/(00-46) Термочувствительные [краски или лаки С 09 D 5/26 элементы (биметаллические G 12 В 1/02 тепловых реле Н 01 Н 61/(02-04))] Термоэлектрические [пирометры G 01 J 5/12 приборы (использование в термометрах G 01 К 7/00 работающие на основе эффекта Пельтье или Зеебека Н 01 L 35/(28-32))] Тигельные печи тепловой обработки 21/04 печей 14/(10-12)) лабораторные В 01 L 3/04 плавильные для литейного производства В 22 D 17/28] Тиски В 25 В (1/00-1/24 ручные 3/00) Тиснение бумаги В 31 F 1/07 картонажных изделий В 31 В 1/88 металлическое В 41 М 1/22 поверхности пластических материалов В 29 С 59/00 способы В 44 С 1/24) Титан [С 22 С (сплавы на его основе 14/00 стали, легированные титаном 38/(14-60)) С 25 (травление или полирование электролитическими способами F 3/08, 3/26 электроды на основе титана для электрофореза В 11/10)] Токарная обработка [древесины В 27 О <15/(00-02) инст рументы 15/(00-02)) камня В 28 D 1/16 пластмасс и подоб ных материалов В 29 С 37/00] Токарные станки [В 23 <В (3 25)/00 затыловочные В 5/42 конструктивные элементы и вспО могательные устройства В 17/00-33/60 линии токарных станков В 3/36 для нарезания резьбы G 1/00 общего назначения В 3/00-3/34 отрезные В 5/14 резцы для них (В 27/(00-24) изготовление Р 15/30) для скашивания кромок, снятие фаски или грата с концов прутков и труб В 5/16 фрезерные съемные устройства к ним С 7/02)]  [c.189]


По Характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты), получаемые на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1—3 %). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).  [c.450]

Теперь рассмотрим обозначения TS и ТР в форме, доступной для технологов нехимического профиля. Пластмассы делятся на термореактивные смолы (TS) и термопластичные смолы (ТР). Если провести реакцию отверждения и затем нагреть термореактивную смолу, то она не будет плавиться и размягчаться. Напротив, термопластичные смолы, переведенные путем нагрева в жидкое состояние, при последующем охлаждении обратимо переходят в твердое состояние. Из термореактивных смол, используемых в качестве связующих для армированных пластмасс, применяют главным образом эпоксидные смолы и в некоторых случаях ненасыщенные полиэфирные смолы. Существует много термопластичных смол (разд. 3.1.2). В качестве матриц дляСРКМ можно использовать различные металлы, но в настоящее время чаще всего применяют алюминий и магний. Наиболее распространенный тип металлоком-позитов - материалы с алюминиевой матрицей.  [c.21]

Формование препрегов с использованием металлических штампов. Этим методом прерсуют уложенные вручную в металлическую форму пакеты однонаправленных или тканевых препрегов на основе углеродных волокон. Формование под давлением среди других методов переработки пластмасс имеет наиболее давнюю историю и широко применяется при переработке термореактивных смол. Для получения изделий из композиционных материалов на основе таких смол и углеродных волокон этот метод используется практически без изменений. Можно отметить его следующие характерные особенности  [c.85]

Пластмасса АГ-4 является прессовочным термореактивным волокнистым материалом на основе фенолформалвдегидной смолы и стекловолокна или стеклонити. Применяют для изготовления электротехнических изделий, обладающих повышенной прочностью для работы при температуре от -196 до +200 С  [c.227]

В качестве связующего вещества используют синтетические смолы и эфиры целлюлозы. По виду связующего все пластмассы подразделяют на термопластичные (термопласты) и термореактивные (реак-топласты). Термопласты отличаются высокотехнологичностью и небольшой усадкой при формовке, обладают значительной эластичностью и не склонны к хрупкому разрушению. Реактопласты хрупкие и дают большую усадку, поэтому использование в них наполнителя обязательно.  [c.151]

Термореактивные пластмассы. В термореактивных пластмассах связующим веществом являются термореактивные смолы (фенолофор-малвдегидные, эпоксидные и кремнийорганические), а также ненасыщенные полиэфирные и полибутановые смолы. Термореактивные  [c.154]

Газонаполненные пластмассы представляют собой материалы на основе синтетических смол, содержащие газовые включения. В пенопластах поры, заполненные газом, не соединяются друг с другом и образуют замкнутые объемы. Они представляют собой жесткие материалы, отличающиеся малой плотностью (0,02-0,2 г/см ), высокими тепло-, звуко- и электроизоляционными свойствами, очень хорошей плавучестью, водостойкостью. Недостаток пенопластов — низкая прочность Термопластичные пенопласты (пенополистирол, пенополивинил-хлорид) получают вспениванием в высокоэластичном состоянии. Они могут использоваться при температуре до 60 С. Вспенивание термореактивных смол производится на начальной стадии отверждения. Фенолфор-мальдегидные пенопласты выдерживают температуру до 160 X, а кремнийорганические — до 250 °С. Используются для теплоизоляции и звукоизоляции, изготовления непотопляемых плавучих средств, в качестве легкого заполнителя различных конструкций. Мягкие виды пенопластов используются для изготовления мебели, амортизаторов и т.п.  [c.245]

Термореактивные пластмассы производят на основе термореактивных смол фенолформальдегидных, аминоальгидных, эпоксидных, полиамидных, кремнийорганических, ненасыщенных полиэфиров. Пластмассы на основе этих смол отличаются повышенной прочностью, не склонны к ползучести и способны работать при повышенных температурах. Смолы в пластмассах являются связкой и должны обладать высокой клеящей способностью, теплостойкостью, химической стойкостью в агрессивных средах, электроизоляционными свойствами, доступной технологией переработки, малой усадкой при затвердевании.  [c.281]

Пластифицированные составы, содержащие поливянилбути-раль, применяют для производства специальных покрытий по тканям. Такие покрытия можно сделать более стойкими к действию растворителей и менее чувствительными к нагреванию, если ввести в них небольшое количество термореактивных смол. Эти покрытия можно применять и в качестве клея для таких различных материалов, как ткань, бумага, асбест, пробка, дерево, металл, стекло и пластмассы. При отверждении этих смол кратковременным нагреванием они становятся более стойкими к действию тепла, растворителей и влаги, чем термопластические клеи. О широком применении чистого поливинилбутираля в качестве промежуточного слоя безосколочного стекла -сообщалось уже выше. Дальнейшие подробности о рецептурах и применении покрытий на основе поливинилбутираля даются в томе И.  [c.593]

Краткое описание акриловых смол показывает, что они обладают рядом свойств, ценных для материалов, применяемых в качестве покрытий. С увеличением их производства и разработкой новых, более дешевых методов синтеза их потребление должно сильно возрасти. Их исключительно выгодными свойствами являются возможность получения весьма бледных окрасок, превосходная стойкость цвета и стойкость к затвердеванию при старении. Они нестойки к действию некоторых растворителей, так как термопластичны, но этот недостаток в ряде случаев можно устранить, смешивая их с термореактивными смолами. Акриловые смолы являются сложными эфирами и поэтому омыляются щелочами, но омыление протекает только в относительно жестких условиях, так как их эфирная группа несколько защиш,ена. Большой диапазон твердости различных акриловых смол делает их пригодными для производства пластмасс, покрытий и клеев.  [c.635]

Эпоксидные смолы. Твердые, хрупкие и жидкие разновидности синтетических термореактивных смол с высокой реакционной способностью. Добавка пластификатора и наполнителя повышает твердость, прочность и эластичность. Клеевой слой из смол после отверждения водостоек, устойчив против действия кислот и щелочей, пе дает усадки, не образует пузырьков, обладает хорошими диэлектрическими свойствами. Комбинированием эпоксидной и полиэфирной смол создаются хорошие конструкционные качества пластмасс. Эпоксидные смолы растворяются в ацетоне, толуоле и других растворителях. Наибольшую механическую прочность при склеивании металлов обеспечивает эпоксидная смола горячего отверждения. Могут быть отмечены малая усадка, незначительные выделения лет5гчих веществ при затвердевании эпоксидных смол, их хорошая приставаемость к металлам, керамике и стеклу, устойчивость к повышенной температуре до 120—130°, а также хорошая сопротив.ттяемость старению.  [c.296]

Поврежденные детали кузовов и кабин, для изготовления которых применяют пластические массы, в процессе ремонта заменяют новыми, так как технология их изготовления проста и экономична. Детали, ремонт которых целесообразен и экономически оправдан, обычно восстанавливают склеиванием. Выбор клея для соединения пластмассовых материалов зависит от химической природы материала, условий работы клеевого соединения и технологии его нанесения. Для изготовления деталей из пластических масс используют этрол, полиамид, органическое стекло, капрон и др. Технология склеивания складывается из обычных операций подготовки поверхности, нанесения клея и выдержки клеевого состава под давлением. Детали, изготовленные из этрола, склеивают уксусной кислотой, которой промазывают склеиваемые поверхности, и затем соединяют их под небольшим давлением. Затвердение происходит в течение 0,75—1 ч. Для склеивания полиамидов применяют растворы полиамидов в муравьиной кислоте или муравьиную кислоту. Детали из пластмассы на основе термореактивных смол склеивают клеем ВИАМБ-3. После нанесения клея на обе склеиваемые поверхности и выдержке их в открытом виде при комнатной температуре в течение 10—15 мин детали собирают в прижимном приспособлении, в котором выдерживают 8—12 ч. Наиболее часто восстановлению подлежат детали, изготовленные из органического стекла. При появлении в стекле трещины в конце ее сверлят отверстия диаметром 3—4 мм для ограничения ее дальнейшего распространения, а при наличии пробоины ставят дополнительную ремонтную деталь. Отверстия в органическом стекле сверлят обыкновенными инструментальными сверлами с углом при вершине сверла, равным 140°. Для склеивания деталей из органического стекла используют раствор, состоящий из 2—3% стружки оргстекла, перемешанной  [c.338]



Смотреть страницы где упоминается термин Термореактивные смолы и пластмассы : [c.177]    [c.34]    [c.309]    [c.20]    [c.231]    [c.181]    [c.174]    [c.232]   
Смотреть главы в:

Коррозионная стойкость материалов  -> Термореактивные смолы и пластмассы



ПОИСК



Пластмасса термореактивная

Смола



© 2025 Mash-xxl.info Реклама на сайте