Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действие подвижной нагрузки на мосты

Рассмотрение обоих предельных случаев действия подвижной нагрузки на мосты дает основание полагать, что вообще увеличение прогиба и наибольшего изгибающего момента, обусловленное тем обстоятельством, что груз надвигается на балку с некоторой конечной скоростью, невелико и тем меньше, чем больше пролет моста.  [c.176]

S3. ДЕЙСТВИЕ ПОДВИЖНОЙ НАГРУЗКИ НА МОСТЫ 397  [c.397]

Действие подвижной нагрузки на мосты  [c.397]

Опытное определение ударного действия подвижной нагрузки на мосты  [c.399]


Полное решение уравнения (Ь) сначала в виде рядов и потом в замкнутой форме получено Стоксом, который затратил много труда на разработку вопроса о действии подвижной нагрузки на мосты  [c.358]

Мосты подвергаются действию различных нагрузок, которые можно разделить на следующие основные виды вертикальные нагрузки — подвижная, или временная, и постоянная горизонтальные нагрузки — ветровая, центробежная и тормозная поперечные толчки и удары ОТ подвижной нагрузки. На мосты дополнительно могут также ока-  [c.90]

Некоторые результаты предыдущей главы могут служить для определений колебаний, возникающих в мостах под действием подвижной нагрузки. При расчете мостов обыкновенно предполагается, что подвижная нагрузка из одного положения в другое переходит с бесконечно малой скоростью, и потому давление каждого из подвижных грузов в любой момент равно весу этого груза. При конечных скоростях это предположение не вполне точно, благодаря прогибу моста катящиеся по нему грузы совершают некоторые перемещения по вертикальному направлению. Силы инерции, соответствующие этому перемещению, очевидно, должны быть присоединены к весу грузов при вычислении давлений, оказываемых грузами на мост. Кроме того, должно принять во внимание силы инерции элементов самого моста, совершающих перемещения при проходе подвижной нагрузки. Во всей полноте задача о динамическом прогибе мостов является до сих пор нерешенной, исследованы лишь предельные случаи.  [c.172]

Нужно думать, что эта формула, давая высокие значения ударного коэффициента даже в случае мостов больших пролетов, несколько преувеличивает роль динамического действия подвижной нагрузки и таким образом покрывает недостаточность оценки влияния усталости металла. Дополнительная проверка на усталость делается лишь для сжато-вытянутых стержней в том случае, когда перемена знака напряжений часто повторяется. Для таких стержней производится проверка на усилие каждого знака, причем к этим усилиям каждый раз прибавляется половина меньшего по величине усилия.  [c.397]

Кроме лабораторных исследований, желательно производить измерения деформаций и напряжений на суш,ествуюш,их мостах только этим путем можно установить, насколько наши расчетные напряжения соответствуют действительности, и таким путем выяснить степень надежности наших расчетов. Опытным путем следует изучить также вопрос о колебаниях мостов под действием подвижной нагрузки. Особый интерес здесь представляют боковые колебания. Так как при этом придется иметь дело с большими перемещениями, то записывание колебаний, определение их амплитуды и периода не представит особых затруднений. Без особых затруднений могут быть исследованы также деформации балок проезжей части под действием подвижной нагрузки.  [c.422]


Учитывая, что приведенная сила, вызывающая деформации, равные наибольшим амплитудам колебаний низа колонны крана, при нормальной работе, по. данным эксперимента, составляет 0,15 Qh, легко перейти от наибольших амплитуд к приведенной жесткости конструкции кранов-штабелеров. На рис. 18,6 показана полученная в результате такого перехода область рекомендуемых приведенных жесткостей системы мост — колонна. При расчете определяют вертикальный прогиб балок моста под действием подвижной нагрузки, а также горизонтальное перемещение нижней точки колонны под дейст-  [c.62]

Мосты мостовых кранов целесообразно проверять на прогиб от действия подвижной нагрузки (вес тележки с грузом). Прогиб для мостов мостовых кранов не следует принимать больше чем 1/,оо пролета.  [c.37]

Наибольший статический прогиб главных балок, согласно стр. 37, определяем только на действие подвижной нагрузки, которую в целях упрощения принимаем сосредоточенной в середине моста.  [c.166]

Нагрузка на ось. Нагрузка на ось показывает максимальную осевую массу в килограммах, т. е. часть полной массы автомобиля (собственная масса полностью заправленного, снаряженного и загруженного до номинальной грузоподъемности автомобиля), приходящуюся на наиболее нагруженную ось, как правило, на заднюю. Этот показатель является существенным для определения маршрута следования подвижного состава при перевозках груза, так как для ряда дорожных сооружений (мосты, путепроводы) действуют ограничения по возможности проезда автомобилей с большими нагрузками на ось.  [c.20]

Выше было рассмотрено лишь статическое действие нагрузки, величина и положение которой меняются со временем столь незначительно, что можно пренебречь влиянием сил инерции и динамическим эффектом нагрузки. При статическом действии нагрузки мы считали, что нагрузка медленно изменяется от нуля до конечного своего значения. Нередко мы встречаемся с динамическим действием нагрузки, которая зависит от времени, быстро меняясь и вызывая в элементах конструкций ускорения и силы инерции. Подвижная нагрузка (поезд, автомобиль) меняет свое положение на балке, вызывая и ударные эффекты (ввиду наличия выбоин в пути, выбоин в бандажах колес и т. д.). Продолжительность действия ударных нагрузок т может быть мала по сравнению с периодом собственных колебаний системы Т (так, продолжительность прохождения колесом выбоины в 10 см при скорости 72 км ч будет т = 0,005 с, а период колебаний моста пролетом / = 20 м будет Т = 0,09 с, и в таком случае динамическую нагрузку можно принимать очень кратковременной или, в пределе, мгновенной). Встречаются динамические продолжительные нагрузки, промежуток действия которых в несколько раз более периода собственных колебаний системы (например, действие меняющегося по величине давления ударной волны атомного взрыва может быть в промежутке времени, равным т=1 с, т. е. почти в 10 раз более указанного периода колебаний моста). Нередко имеют место повторные динамические нагрузки (повторные удары колес подвижного состава о стыки рельсов). Особенно неблагоприятное действие оказывают периодические повторные удары.  [c.327]

РиП и р 1, где п — число колесных пар, а р — эквивалентная нагрузка при п > 4, При неравенстве пролетов и более сложных случаях загружения расчет ведут по линиям влияния так же, как расчет мостов и эстакад на действие подвижных грузов.  [c.53]

Угол качания карданного вала автомобиля М-20 по средней оси составляет минимум 20° в обоих карданах угловые перемещения вала в сборе с двумя карданами не превышают 0,25 мм на радиусе 35 мм под действием нагрузки в 7,0 кг, приложенной на подвижном конце вала при неподвижном другом. Фланцы карданного вала жестко соединены с фланцами ведущей шестерни заднего моста и ведомого вала коробки передач.  [c.301]

Опорные части передают вертикальные нагрузки от пролетных строений на опоры. Конструкция опорных частей определяется характером их работы. При изменении температуры пролетные строения удлиняются или укорачиваются. Поэтому если закреплен один конец пролетного строения, то опорные части должны обеспечить перемещение другого его конца вдоль оси моста. Для этого опорные части устраивают неподвижные и подвижные (рис. 3.2). Когда пролетное строение загружено поездной нагрузкой, то вследствие его прогиба происходит не только продольное перемещение одного конца пролетного строения, но и поворот обоих концов на некоторый угол. Опорные части за счет шарнира позволяют пролетному строению свободно прогибаться и возвращаться в исходное положение после прекращения действия нагрузки.  [c.79]


Колебания мосто. — Хорошо известно, что движущийся груз вызывает ббльшие напряжения и бб.чыиие прогибы моста или балки, чем та же нагрузка, действующая статически. Такое динамическое действие подвижной нагрузки на мосты имеет большое практическое значение, и над решением этой проблемы работали многие инженеры ).Из различных причин, вызывающих динамические эффекты в мостах, будут рассмотрены следующие 1) динамическое действие Hai-рузки, движущейся без толчков 2) динамическое действие противовесов ведущих колес локомотива  [c.346]

Мы остановились несколько на теоретическом и опытном исследовании вопроса о действии подвижной нагрузки на балку, чтобы выяснить вопрос о надлежащем выборе ударного коэффициента в формулах вида (3). На основании сказанного выше можно заключить, что лишь при малых пролетах неблагоприятное действие подвижной нагрузки убывает с возрастанием пролета. Что касается мостов значительных пролетов, то здесь неблагоприятное влияние подвижной нагрузки на усилия в частях обусловлено главным-образом явлением резонанса , а вероятность этого явления не понижается с возрастанием пролета моста. Поэтому, желая при помощи формулы (3) учесть неблагоприятное действие подвижной нагрузки, нужно для величины а брать значения, быстро убывающие с возрастанием пролета. Такого рода выражение для а предложено было проф. С. К. Куницким ) и позже Г. Г. Кривошеиным ). Учитывая таким путем повышение усилий вследствие динамичности нагрузки, эти авторы  [c.405]

Инженеры разрабатывали все новые типы ферм, которые назывались их именами, так как каждое изменение формы очертания фермы, расположения и числа элементов решетки в них приводило к разным несущим характеристикам. Поскольку в то время в отсутствие общей теории стержневых конструкций характер изменений не мог быть оценен, каждое изменение фермы понималось как создание ферм нового типа. Основным вопросом развития сквозных конструкций, как было замечено выше в отношении ферм Шведлера, был вопрос оптимального использования несущих элементов, т. е. экономии материала и создания достаточной жесткости при действии на фермы сравнительно больших подвижных нагрузок от тяжелых локомотивов. Вехами этого развития из множества разработанных типов стержневых систем являются фермы Паули, или рыбкообразные фермы, и фермы полупараболического очертания. Инженер Ф. Паули (1802—1883) разработал фермы с верхним и нижним поясами, изогнутыми по форме параболы, с пересекающимися диагональными раскосами и приподнятым железнодорожным полотном (рис. 274). В идеальном виде эта конструкция была реализована в 1857 г. при строительстве моста пролетом 52 м через р, Изар в Гроссеселое. Кривизна поясов задавалась таким образом, что при равномерно распределенной по всему пролету нагрузке поперечное сечение верхнего пояса по всей длине пролета использовалось полностью. Перекрестные раскосы могли работать только на растяжение, возникающее при действии подвижной нагрузки.  [c.139]

Мосты мостовых кранов целесообразно проверять на прогиб от действия подвижной нагрузки. Величину этого прогиба принимают не более Д/700. В некоторых случаях (сварные двухстен-чатые балки) при малом отношении высоты балки к пролету производится расчет ее упругих колебаний.  [c.39]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений являются подшипники скольжения, работающие со смазочным материалом. Для обеспечения наибольшей долговечности необходимо, чтобы при работе в установившемся режиме износ подшипников был минимальным. Это достигается при жидкостной сма.зке, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазочного материала. Наибольшее распространение имеют гидродинамические подшипники, в которых смазочный материал увлекается враш,ающейся цапфой в постепенно сужаю-ш,ийся (клиновой) зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша. При этом вал отделяется от поверхности вкладыша и смещается по направлению вращения. Когда вал находится (штриховая линия на рис. 9.5) в состоянии покоя, зазор S = D — d. При определенной частоте вращения вала (остальные факторы постоянны) создается равновесие гидродинамического давления и сил, действующих на опору. Положе1ше вала в состоянии равновесия определяется абсолютным е и относительным "/ = 2e/S эксцентриситетами. Поверхности цапфы и вкладыша подшипника при этом разделены переменным зазором, равным /i ,m в месте их наибольшего сближения и Апих = S —/гп,т на диаметрально противоположной стороне. Наименьшая толщина масляного слоя /г и, связана с относительным эксцентриситетом % зависи.мостью  [c.212]

Сооружение первых железных дорог сообщило сильный толчок дальнейшему развитию пауки о сопротивлении материалов, поставив перед ней ряд новых проблем (в особенности в области строительства мостов), требовавших практического разрешения. В качестве материалов для строительства мостов вначале применялись камень и чугун. В отношении последнего было известно, что он оказывается весьма пригодным материалом при работе на сжатие, как, например, в арочных мостах, но обнаруживает ненадежность в балках вследствие слабой сопротивляемости усталости под действием переменных напряжений, вызываемых тяжелой подвижной нагрузкой. Делались попытки усилить чугунные балки постановкой железных затяжек, но безуспешно. Выяснилась необходимость в более надежном материале, и начиная с 1840 г., 1 строительстве мостов получило быстрое распространение сварочное железо. Применение двутавровых балок из листового железа стало обычным в мостах малых пролетов одновременно стало очевидным, что и для более крупных сооружений, несущих нагрузку железнодорожных поездов, требовались новые конструктивные решения. В то время уже существовали висячие мосты больших пролетов, однако большая податливость их при действии тя-я елых подвияшых нагрузок делала их непригодными для обслуживания железнодорожного транспорта.  [c.189]


Если бы ветровые связи работали лишь при действии ветра, то за допускаемое напряжение следовало бы выбрать постоянную величину 14 кг мм , на которой мы остановились при составлении основной формулы (6). В действительности в связях возникают усилия от целого ряда других причин от вертикальных сил, от ударов подвижной нагрузки в горизонтальном направлении (эти удары должны иметь особенно существенное значение в мостах малых пролетов), от колебаний моста в горизонтальной плоскости. Колебания эти могут быть особенно опасными в случае мостов больших пролетов, когда ширина моста мала по сравнению с пролетом и жесткость моста в боковом направлении мала по сравнению с жесткостью в вертикальной плоскости. Исходя из этих соображений, приходится от постоянных значений для Ri отказаться и перейти к переменным значениям, меняющимся в зависимости от пролета и условий работы частей. Для получения иногда прибавляют к величине основного напряжения R некоторую постоянную величину (например, в швейцарских нормах принимается Ri = (R- -l) кг1мм ,ъ прусских нормах jRi=(jR+l,5) KajMM ). Мы полагаем более правильным для получения Ri увеличить напряжение R, найденное по формуле (6), в определенном процентном отношении. Основываясь на существующих нормах, считаем возможным допустить в поясах ферм при совместном действии вертикальной нагрузки и ветра напряжения Ri, превосходящие напряжения R на 25% ). Наибольшее значение Rt, получаемое таким образом для элементов поясов, принимаем за допускаемое напряжение и для ветровых связей. Отметим здесь желательность учета работы связей от вертикальных нагрузок, так как есть основание думать, что в мостах больших пролетов сравнительно малой ширины, благодаря боковым колебаниям, ветровые связи испытывают весьма большие динамические напряжения.  [c.415]

На рис. 1 воспроизведена одна из созданных во ВНИИМ действующих схем поддержания адиабатических условий в калориметре для определения теплоемкости твердых тел. Сигнал разности температур между двумя поверхностями, преобразованный дифференциальной термопарой в т. э. д. с. и усиленный фотоусилителем Ф118 завода Вибратор , подается на быстродействующий регистратор типа Н-320—1 и измерительный блок прибора КПИ-Т. Для создания регулирующего воздействия по первой производной применен дифференциатор ЭД-К, выпущенный МЗТА (лучше для этой цели применять дифференциатор ЭД-Т-60 того же завода). Шесть выходных обмоток КПИ-Т, соединенных последовательно для усиления выходного сигнала, управляют работой фазочувствительного усилителя мощности, построенного на двух параллельно включенных лампах 6Н14П. Нагрузкой усилителя является пятиваттный адиабатический нагреватель, подключенный через согласующий трансформатор (при потребности в мощности от 25 до нескольких сотен ватт целесообразно применять в качестве усилителя тиратрон-ные схемы с фазовым мостом или магнитные усилители). Благодаря бесконтактному выходу и отсутствию подвижных частей описываемая схема обладает высокими эксплуатационными качествами.  [c.290]

Для пропуска подвижного состава той илн иной массы все мосты железнодорожной сети классифицируют (определяют класс моста) по грузоподъемности на основании действующих расчетных норм и инструкций (ПТЭ, п. 3.11). Мост испытывает постоянную и воеменную нагрузки. Постоянная нагрузка моста — это его соб-  [c.59]

В раскрывающихся мостах двухдисковых (фиг. 23—28) разгрузка рабочих опор достигается в процессе опускания крыла передачей веса противовесов на специальные опоры. Мосты с подвижной осью вращения (Шерцера и Ралля фиг. 21 и 22) в процессе своего движения накатываются на свои постоянные опоры. В мостах с постоянной осью вращения (фиг. 20) разгрузка рабочих опор достигается опрокидыванием в вертикальной плоскости, как в поворотных мостах Шведлера. В подъемных мостах разгрузка опор производится редко, т. к. главная цель этой операции—обеспечение рабочих опор от динамич. воздействия временной нагрузки, а в самом процессе движения мост непосредственно ставится на свои постоянные опоры, на к-рые временная нагрузка будет передаваться независимо от разгрузки противовеса. В откатных мостах разгрузка достигается опрокидыванием вокруг какой-либо из поддерживающих тележек. Т. о. специальные приспособления для разгрузки опор, применяемые главн. обр. в мостах поворотных, раскрывающихся с постоянною осью вращения, и откатных, должны сообщать или всему пролетному строению в целом или концевым его точкам (при опрокидывании всего пролетного строения в вертикальной плоскости) перемещения в вертикальном направлении. Эти приспособления чаще всего устраиваются в виде клиньев, винтовых домкратов, эксцентриков и гидравлических цилиндров. Клиновые приспособления вследствие малости их вертикальных перемещений применяются гл. обр. в средних опорах поворотных мостов для разгрузки пяты от динамич. воздействий (фиг. 36). Во всех опрокидывающихся мостах при значительных перемещениях концевых точек наиболее рациональной конструкцией является винтовой домкрат (фиг. 37), к-рый в современных мостах приводится в действие специальным электрическ. мотором небольшой мощности. Более простой, но менее совершенной конструкцией является эксцентрик. В настоящее вре-  [c.476]

В плане металлоконструкция моста представляет собой раму, образованную главными и концевыми балками, и при расчете рассматривается как плоскопространственная рама, на которую основные нагрузки (постоянные и подвижные) действуют вертикально. В мостах с балками открытого типа, в связи с отсутствием верхних связей, горизонтальная жесткость обеспечивается развитым верхним  [c.22]


Смотреть страницы где упоминается термин Действие подвижной нагрузки на мосты : [c.394]    [c.396]    [c.327]    [c.362]    [c.484]   
Смотреть главы в:

Прочность и колебания элементов конструкций  -> Действие подвижной нагрузки на мосты



ПОИСК



Колебания мостов под действием подвижной нагрузки

Мосты

Нагрузка на мосты

Нагрузка подвижная

Нагрузки, действующие на зуб

Опытное определение ударного действия подвижной нагрузки на мосты



© 2025 Mash-xxl.info Реклама на сайте