Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные закономерности деформирования и разрушения материалов

АЗ. ОСНОВНЫЕ ЗАКОНОМЕРНОСТИ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ МАТЕРИАЛОВ  [c.63]

Расчеты элементов конструкций на малоцикловую усталость базируются на экспериментальных данных изучения закономерностей сопротивления деформированию и разрушению при циклическом упруго-пластическом деформировании, а также исследованиях кинетики неоднородного напряженно-деформированного состояния и накопления повреждений в зонах концентрации — местах вероятного разрушения. Ниже приведены основные понятия и некоторые результаты изучения кинетики деформирования и разрушения материалов при циклическом упруго-пластическом деформировании.  [c.683]


Выпускаемая издательством Наука серия монографических публикаций по вопросам малоцикловой прочности, к которой относится и настоящая монография, рассматривает в логической последовательности основные подходы к оценке сопротивления материалов и элементов конструкций циклическому упругопластическому деформированию и разрушению. В первой из этих монографий — Прочность при малоцикловом нагружении (1975 г.) — изложены основополагающие аспекты методов оценки малоцикловой прочности конструкционных материалов и методов их испытаний, приведены экспериментально обоснованные закономерности деформирования и разрушения, которые описывают характер поведения материалов в рассматриваемых условиях нагружения. Следующая монография — Поля деформаций при малоцикловом  [c.3]

Классификации сталей и сплавов, механические характеристики которых рассмотрены, особенностям их структуры и применению посвящена глава А2. В главе АЗ дан краткий обзор обширного массива информации, полученной при экспериментальном изучении реологических и прочностных свойств материалов, проявляемых при основных типах нагружения (кратковременном, длительном, малоцикловом). Рассмотрены и некоторые используемые в практике расчетов на прочность эмпирические (или простейшие феноменологические) описания закономерностей деформирования и разрушения. Феноменологическим теориям пластичности и ползучести посвящена глава А4. Обсуждаются логика развития этих теорий и трудности, возникающие при описании процессов повторно-переменного деформирования произвольного типа.  [c.11]

Основные механические закономерности сопротивления материалов малоцикловому и длительному циклическому нагружению, а также деформационно-кинетический критерий малоциклового и длительного циклического разрушения необходимы для решения соответствующих задач определения кинетики деформированных состояний в зонах концентрации и оценки долговечности на стадии образования трещины. Полученные данные о сопротивлении циклическому деформированию и разрушению использованы для расчета малоцикловой усталости циклически нагружаемых конструкций. Применительно к сварным трубам большого диаметра магистральных газо- и нефтепроводов, волнистым компенсаторам и металлорукавам на основе их испытаний разработаны и экспериментально обоснованы методы расчета малоцикловой усталости при нормальных и высоких температурах.  [c.275]

Во втором случае экспериментальные исследования сосредоточены на получении исходных характеристик материалов по сопротивлению деформированию и разрушению. Эти характеристики определяются при испытаниях лабораторных образцов. Критерии повреждения устанавливаются на базе исследований основных механических закономерностей поведения материалов при кратковременном и длительном нагружении (ползучесть, длительная прочность и пластичность), при малоцикловом нагружении с выдержками и без выдержек. Указанные исследования позволяют сформулировать критерии образования и развития разрушения и уравнения состояния.  [c.9]


Количественные испытания проводят для определения числа циклов до разрушения или термоциклической долговечности материала при упрощенной, но достаточно точно фиксированной системе действующих на образец тепловых нагрузок, при которой возможен анализ напряженного и деформированного состояний. При этом циклические термические напряжения и деформации определяют или непосредственным измерением, или аналитически. В результате испытания получают зависимость числа теплосмен до разрушения от параметров термодеформационного цикла, по которой можно дать общую количественную оценку долговечности различных материалов при термической усталости и установить основные закономерности процесса термоциклического деформирования и разрушения.  [c.26]

Экспериментальные исследования характеристик механических свойств и трещиностойкости материалов имеют фундаментальное значение и являются неотъемлемой частью комплекса задач конструкционной прочности, решаемых на стадии проектирования технических систем и сооружений. Эксперимент позволяет установить основные закономерности сопротивления материалов деформированию и разрушению, определить базовые характеристики механических свойств, параметры предельных состояний материалов и элементов конструкций, оценить влияние технологических и эксплуатационных факторов.  [c.7]

Основные закономерности малоциклового деформирования в настоящее время уже достаточно хорошо изучены [7, 35, 43, 44, 101, 122, 123], и результаты этих исследований кратко обсуждены в гл. 1. В данном разделе рассматриваются особенности деформирования и разрушения конструкционных материалов при высоких температурах, когда проявляются температурно-временные аффекты ползучесть, релаксация и структурные изменения материала. Особое внимание уделено исследованиям при циклическом нагружении в условиях интенсивного деформационного старения, сопровождающегося сильным изменением прочностных и пластических свойств материала во времени. Причем интенсивность и характер этих изменений зависят также и от условий деформирования, и в первую очередь от формы цикла и частоты нагружения. Учет изменений пластических свойств во времени, определяющих сопротивление материала малоцикловому и длительному статическому разрушению, требует проведения сложных экспериментов в условиях, приближающихся к эксплуатационным, во многих случаях характеризующихся сильным протеканием деформационного старения.  [c.166]

При постановке задачи используются некоторые основные уравнения механики слоистых материалов, приведенные, например, в [172, 296], а также модель стохастических процессов структурного разрушения и тензорные феноменологические модели повреждаемости, рассмотренные в шестой и седьмой главах. Приводятся результаты численного моделирования процессов деформирования и разрушения некоторых типов композитов, показывающие, что поведение слоистого композиционного материала на макроуровне может качественно отличаться от поведения элементов структуры. Исследуются закономерности вызванных структурным разрушением процессов закритического деформирования при жестком нагружении.  [c.157]

При подготовке третьего издания книги Механические свойства металлов многие главы переработаны с учетом современных представлений об особенностях процессов деформирования и разрушения, а другие дополнены. Так, глава 1 дополнена рассмотрением кинетики и вариационных принципов деформации и разрушения, механических состояний деформируемых тел и структурных изменений при нагружении. В главе 3, наряду с основными закономерностями пластического деформирования, рассмотрены вязкость и ползучесть материалов. Глава 4 о состоянии разрушения полностью переделана с учетом кинетики процесса разрушения (рассматриваются три стадии разрушения докритическая, критическая и закритическая—ускоренная).  [c.16]

Выше были рассмотрены основные закономерности распространения усталостных трещин в металлических материалах, которые обладают достаточной пластичностью. В работах [39, 51, 53,68-77] были исследованы различия в механизмах усталостного разрушения ОЦК металлов и сплавов при температурах выше и ниже критической температуры хрупкости Т . Конечно, такая постановка вопроса носит условный характер, поскольку определенная при однократном (ударном) деформировании, должна отличаться от температуры вязко-хрупкого перехода в условиях циклического деформирования так как условия испытания существенно различаются. Ясно также, что форма образцов, геометрия концентраторов напряжения и вид нагружения будут влиять на температуру вязко-хрупкого перехода при обоих видах испытания. Таким образом, определяющим параметром в определении этой температуры в условиях циклического де-  [c.138]


Дальнейшее развитие представлений о периодичности и стадийности процессов накоплений повреждений в области многоцикловой усталости в работах [20, 21], показало, что весь процесс усталости металлических материалов по аналогии с деформированием при статическом растяжении можно разделить на два периода зарождения усталостных трещин и распространения усталостных трещин. Впоследствии мы будем рассматривать закономерности усталостного разрушения в основном в области многоцикловой усталости, хотя при рассмотрении многих аспектов проблемы многоцикловой и малоцикловой усталости бывает разделить трудно.  [c.49]

Точность любого критерия оценивается путем сопоставления результатов расчета и данных опыта. Известные экспериментальные далные о закономерностях деформирования и разрушения материалов при сложном напряженном состоянии весьма ограничены, что объясняется большими методическими трудностями при постановке опыта. Эти трудности значительно возрастают при проведении испытаний в условиях высоких и низких температур. По ш13ко- и высокотемпературной прочности материалов при сложном напряженном состоянии в литературе опубликованы лишь качественные результаты, практически полностью отсутствуют какие-либо данные о принципах конструирования соответствуюшдх испытательных средств. Этим вопросам во втором разделе уделено особое внимание. Здесь, в частности, подробно описаны методики и экспериментальные установки, разработанные и созданные в Институте проблем прочности АН УССР под руководством и ири непосредственном участии авторов, проведен анализ основных экспериментальных результатов по изучению законов упрочнения и критериев предельного состояния наиболее типичных представителей отдельных групп конструкционных материалов в различных условиях механического и теплового нагружения.  [c.8]

В значительно меньшей мере изучены закономерности деформирования и разрушения материалов при низких температурах. На этих вопросах и акцентируется ниже основное внимание.  [c.306]

Рассмотренные в ш. 3.1-3.3 основные механические закономерности деформирования и разрушения конструкционных материалов являются основой для расчетов прочности, ресурса и трещиностойкосги несущих элементов машин и конструкций [1-16]. При этом, как отмечалось раннее, современные расчеты в машиностроении предусматривают два основных этапа  [c.164]

Научная и практическая актуальность проблемы исследования физических закономерностей пластической деформации и разрушения поверхностных слоев твердого тела обусловлена тем обстоятельством, что свободная поверхность, являясь специфическим видом плоского дефекта в кристалле, оказьтает сзш1ественное влияние на его физико-механические свойства, в частности на упругую стадию деформирования, предел пропорциональности и предел текучести на общий характер кривой напряжение—деформация и различные стадии деформационного упрочнения (на коэффициенты деформационного упрочнения и длительность отдельных стадий) на процессы хрупкого и усталостного разрушения, ползучести, рекристаллизации и др. Знание особенностей и основных закономерностей микродеформации и разрушения поверхностных слоев материалов необходимо не только применительно к обычным методам деформировани (растяжение., сжатие, кручение, изгиб), но и в условиях реализации различного рода контактных воздействий, с которыми связаны многочисленные технологические процессы обработки материалов давлением (ковка, штамповка, прокатка и др.), а также процессы трения, износа, схватывания, соединения материалов в твердой фазе, поверхностных методов обработки и упрочнения, шлифования, полирования, обработки металлов резанием и др.  [c.7]

Восьмая глава посвящена исследованию упругопластического деформирования и структурного разрушения слоистых композитов. Рассматривается постановка и рш1ение стохастических краевых задач в перемещениях и напряжениях для общего случгш нелинейных определяющих соотношений пластически сжимаемых и случайно чередующихся слоев с учетом разброса прочностных свойств и возможных механизмов разрушения. Граничные условия задач соответствуют произвольно заданному макроскопически однородному деформированному или напряженному состоянию композита. Моделируются многостадийные процессы деформирования и разрушения слоистых композитов. В данной главе, как и в предыдущей, закритическая стадия деформирования, проявляющаяся в разупрочнении материала, обнаруживается при решении задач как результат структурного разрушения. Это позволяет на базе использования апробированных моделей механики композитов в ходе проведения вычислительных экспериментов исследовать основные закономерности закритического деформирования композиционных материалов различной структуры.  [c.12]

Основные закономерности ударно-волнового процесса деформирования и разрушения слоистых пакетов, приведенные для плоских одномерных волн, имеют место для цилиндрических и сдвиговых волн [88, 90]. Особенностью распространения сдвиговых волн для упрутопластических материалов состоит в том, что их максимальная амплитуда по напряжениям ограничена преде-  [c.137]

В Монографии исследованы закономерности образования и развития разрушения при малоцикловом нагружении. Описаны основные закономерности циклического згпругопластического деформирования конструкционных материалов, в том числе при высокотемпературном нагружении. Рассмотрено практическое использование полученных автором основных критериальных зависимостей по описанию разрушения на стадии образования и развития трешин.  [c.2]


Заключение. Модель трещины на границе соединения материалов со связями между берегами позволяет исследовать основные закономерности распределения усилий в связях при различных законах их деформирования, оценить эффекты упрочнения, вызванные присутствием связей в копцевой области трещины, провести анализ предельного равновесия трещины с учетом энергетического и кинематического критериев. Такой анализ позволил оценить предельный размер концевой области трещины, допустимую нагрузку и характеристики адгезионного сопротивления соединения двух материалов. Подчеркнем, что модель дает возможность с единых позиций рассматривать процесс адгезионного разрушения, включая стадии зарождения дефекта, формирования и роста микро- и макротрещины.  [c.237]

Существенное снижение характеристик сопротивления усталостному разрушению металлов при наличии дефектов типа грещин известно давно. Однако особенн большой интерес к влиянию трещин на прочность материалов и деталей машин проявляется в последние годы. Эго вызвано интенсивным развитием относительно нового> раздела механики твердого деформируемого тела — механики разрушения, рас сматривающей условия разрушения на основе анализа напряженно-деформированного сосгояния в вершине трещины. В этом направлении выполнен большой объем теоретических и экспериментальных исследований, позволивших установить общие закономерности начала развития трещин, их стабильного развития и окончательного разрушения при циклическом нагружении с учетом влияния технологических,, конструкционных и эксплуатационных факторов. Эти исследования позволили еде-лагь следующие основные выводы.  [c.3]

Трение является диссипативным процессом, в котором основная часть работы внешних сил затрачивается на поглош,ение энергии материалом поверхностных слоев и образование теплоты. Процесс диссипации реализуется упругопластической деформацией поверхностных слоев металлов. При этом напряженно-деформированное состояние поверхностных слоев при трении имеет свои особенности. Так, в отличие от объемного напряженно-деформированного состояния, при трении максимальные напряжения возникают в микрообъемах поверхностного слоя. В связи с дискретностью контакта это происходит неодновременно и зависит от степени дискретности и условий трения, например, скорости скольжения. Так как в каждом микрообъеме при трении происходит циклическое изменение знака напряжений, то создаются условия для проявления эффекта Баушиигера. Одновременность деформации и диффузии элементов среды накладывает особенности на механизм пластической деформации, который определяется также важным следствием активации поверхностных слоев — увеличением дефектности структуры металлов и сплавов. В целом в механизме разрушения поверхностных слоев при трении первична упругопластическая деформация. Однако особенности и специфичность механизма пластической деформации до сих пор не позволили разработать физические основы и раскрыть закономерности поверхностного разрушения при трении.  [c.5]


Смотреть страницы где упоминается термин Основные закономерности деформирования и разрушения материалов : [c.17]    [c.192]    [c.91]   
Смотреть главы в:

Механические свойства сталей и сплавов при нестационарном нагружении  -> Основные закономерности деформирования и разрушения материалов



ПОИСК



Материал основной

Материалы - Деформирование

Основные закономерности

Разрушение материалы



© 2025 Mash-xxl.info Реклама на сайте