Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растворы электролитов

При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке. Кроме того, при пропускании электрического тока металл заготовки в точке контакта с инструментом разогревается так же, как при электроконтактной обработке, и материал заготовки размягчается. Продукты электроэрозии и анодного растворения удаляются из зоны обработки при относительных движениях инструмента и заготовки.  [c.409]


Соответствующие расчеты показывают, что в атмосфере воздуха и водных растворах электролитов большинство металлов термодинамически неустойчиво. Так, если Ag, Си, РЬ и Hg не подвержены коррозии с водородной деполяризацией (см. табл. 38), то в присутствии кислорода воздуха все они термодинамически неустойчивы, так как возможна их коррозия вследствие кислородной деполяризации (см. табл. 35).  [c.324]

Быстрое сравнение коррозионной стойкости металлов и коррозионной активности различных сред (водных растворов электролитов, грунтов, расплавов) может быть произведено электрохимическим методом с использованием поляризационных кривых, полученных упрошенным методом. При этом методе измеряют  [c.458]

К электрохимической коррозии, являющейся гетерогенной электрохимической реакцией, относятся коррозионные процессы, протекающие в водных растворах электролитов, влажных газах, расплавленных солях и щелочах. При электрохимической коррозии процесс растворения металла сопровождается появлением электрического тока, т. е. упорядоченным передвижением электронов и ионов от одного участка металла к другому. При этом электрический ток возникает вследствие протекания процесса коррозии металла, а не за счет его подвода от внешнего источника.  [c.6]

Так как в большинстве технологических процессов химических производств в основном преобладают растворы электролитов, то и процессы электрохимической коррозии являются в этих производствах основными, наиболее значительными по разрушающему действию на металлы.  [c.7]

Металлы относятся к проводникам первого ряда для них характерно прохождение тока, не сопровождающееся химическим изменением материала. В отличие от растворов электролитов, электропроводность металла не связана с переносом вещества и носит название электронной или металлической.  [c.10]

Особенности строения растворов электролитов  [c.11]

ОСОБЕННОСТИ СТРОЕНИЯ РАСТВОРОВ ЭЛЕКТРОЛИТОВ  [c.11]

Как ранее указывалось, коррозионный процесс, возникающий в результате взаимодействия поверхности металла с водными растворами электролитов, влажными газовыми средами или расплавами солей и щелочей, является гетерогенной электрохимической реакцией и, в зависимости от характера внешней среды, протекает различно.  [c.14]

Очевидно, что энергия гидратации ионов металлов должна быть больше значения рабочей функции. Сопоставляя данные, приведенные в табл. 1, можно сделать вывод, что энергия гидратации для большинства металлов значительно больше рабочей функции и вероятность перехода ион-атомов из металлической решетки в раствор электролита весьма велика.  [c.14]


Процессы, протекающие на границе металл—раствор электролита  [c.15]

Наличие электронной проводимости у металла и ионной проводимости у раствора электролита позволяет анодным и катодным процессам протекать раздельно на различных участках поверхности металла.  [c.18]

При погружении металла в раствор электролита между поверхностью металла и электролитом возникает разность потенциалов, называемая потенциалом электрода.  [c.19]

При погружении в раствор электролита двух разных металлов, соединенных проводником, по последнему проходит ток вследствие наличия в образовавшемся гальваническом элементе электродвижущей силы. Каждый гальванический элемент характеризуется определенной электродвижущей силой 7, численно равной разности потенциалов между его электродами в разомкнутом состоянии, т. е. при условии, что сила тока в цепи равна нулю,  [c.27]

Возникновение коррозионных элементов происходит не только при контакте двух разнородных металлов, но и при воздействии раствора электролита на один и тот же металл, отличающийся на разных участках физической или химической неоднородностью. Весьма распространенными элементами этого типа являются также элементы, возникающие при взаимодействии электролитов с техническими металлами, при наличии в последних примесей, или с гетерогенными сплавами.  [c.30]

Катодная реакция с выделением водорода относится к наиболее частым случаям коррозии большинства металлов и сплавов под действием кислот, а также некоторых металлов с весьма отрицательными потенциалами (например, магния и его сплавов) в нейтральных растворах электролитов.  [c.39]

ВЛИЯНИЕ СКОРОСТИ ДВИЖЕНИЯ РАСТВОРА ЭЛЕКТРОЛИТА  [c.79]

Влияние скорости движения раствора электролита  [c.81]

Электрохимический механизм процесса коррозионного растрескивания обусловлен возникновением на поверхности металлов в растворах электролитов неоднородностей. Эти неоднородности объясняются  [c.107]

Почвы с низким сопротивлением особенно благоприятны для процессов электролиза, а следовательно, для коррозии блуждающими токами, которые могут возникать не только в земле, но и в обычных растворах электролитов. Так, на химических заводах в цехах электролиза хлористого натрия при наличии утечки тока наблюдается коррозия труб и ванн, вызываемая указанными явлениями.  [c.189]

Расчет омического падения напряжения в электролите производится следующим образом. Сопротивление слоя раствора электролита длиной I см и площадью поперечного сечения S см равно l/xS Ом, где и — удельная электропроводимость. Таким образом, омическое падение напряжения в вольтах равно /7/х, где / — плотность тока. Для морской воды х = 0,05 Ом см следовательно, при плотности тока 1-10" А/см (0,1 А/м ), создаваемой при катодной защите стали, поправка на омическое падение напряжения при расстоянии между носиком и катодом 1 см равна (1X X 10" В)/0,05 = 0,2 мВ. Эта величина незначительна при установлении критической минимальной плотности тока для надежной катодной защиты. Однако в мягкой воде, где х может быть 10" Oм" м" соответствующее омическое падение напряжения может достигать 1 В/см.  [c.50]

Большинство металлических покрытий получают или кратковременным погружением изделий в ванну с расплавленным металлом горячее покрытие) или электроосаждением из водных растворов электролитов. Существуют и менее распространенные способы.  [c.230]

Муса и от 9 до 11 ккал/моль для остальных грунтов) значительно превосходят значения энергии активации вязкости воды (от 3 до 6 ккал/моль) и подвижности водородных ионов (от 1 до 3 ккал/г-ион), что указывает на существенное различие процессов диффузии в жидкой фазе грунтов и igff почв и в растворах электролитов. gg Возможны и отступления от экспоненциальной зависимости скорости грунтовой и почвенной коррозии металлов от температуры, связанные с более быстрым высыханием или с меньшей аэрацией грунта или почвы при повышении температуры.  [c.389]

Повышение содержания хрома в стали снижает скорость коррозии в расплаве Na l (табл. 65), особенно резко при увеличении количества хрома до 17%, но наблюдаемый при этом эффект значительно меньше, чем в водных растворах электролитов.  [c.413]


Как показали М. М. Гольдберг и Н. Д. Томашов, электрохимический метод можно применять для определения защитных свойств различных лакокрасочных покрытий на стали по величине тока пары стальной образец с покрытием — насыщенный каломельный электрод, а также для установления механизма действия покрытия по значениям потенциалов окрашенного и неокрашенного образца в растворе электролита (например, в 3%-ном Na l). Схема простой установки для этих целей приведена на рис. 356. В течение испытаний измеряют поочередно величину  [c.463]

Так как коррозионные процессы в большинстве случаев протекают по электрохимическому механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно заряженных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также эти вещества в расплавленном состоянии. Электролитами могут быть и некоторые неводные растворы. Наряду с сильными электролитами, полностью диссоциирующими в растворах на ионы, некоторые вещества, например органические кислоты, лишь частично распадаются на ионы их принято называть слабыми электролитами.  [c.11]

Скорость коррозии металлов в растворах электролитов в значительной степени зависит от характера раствора и протекает по-разному в кислых, щелочных и нейтральных растворах. Характер раствора молгно определить по активности в нем водородных ионов. Вода только в незначительной степени диссоциирована на ионы водорода Н+ и ноны гидроксила ОН . Произведение активностей ионов водорода и ионов гидроксила для воды и водных растворов есть величина постоянная, равная примерно Ю " при 25° С. Активность ионов Н+ в растворе молгно охарактеризовать водородным показателем pH, представляющим собой логарифм актпвпости ионов Н+, взятый с обратным знаком  [c.11]

ПРОЦЕССЫ, ПРОТЕКАЮЩИЕ НА ГРАНИЦЕ А4ЕТАЛЛ — РАСТВОР ЭЛЕКТРОЛИТА  [c.14]

Способность ион-атома переходить в раствор электролита различна у разных металлов и может быть охарактеризована рабочей функцией, представляющей собой скачок потенциала, возникающий на границе металл — вакуум. Чем больше значение рабочей функции, т. е. чем сильнее связь между ион-атомом и электроном, тем труднее ион-атому покинуть металлическую решетку. Как видно из данных, приведенных в табл. 1, такие металлы, как платина и медь, характеризуются большой рабочей функцией и обладают меньшей склонностью переходить из металлического состояния в ионное, чем, например, калий, нанрий или магний.  [c.14]

Когда ионы металла переходят в раствор (энергия гидратации ионов достаточна для разрыва связи между ион-атомами и электронами), на поверхности металла остается эквивалентное количество электронов (рис. 7), которые в раствор не переходят и сообщают металлу отрицательный заряд. 3)тот заряд вызывает электростатическое притяжение между положительно заряженными ионами металла, перешедшими в раствор, и поверхностью металла. Указанные явления на границе металл — водный раствор электролита приводят к возникновению двойного электрического слоя, образуемого электрическими зарядами, находящимися на металле, и ионами противоиоложного заряда, располагающимися у поверхности металла в растворе, что приводит к установлению некоторой разности иотенциалов между металлом и раствором электролита (рис. 8, а).  [c.15]

Образовавшийся иа границе металл — раствор двойной электрический слой можно уподобить ллоскому конденсатору, одна обкладк.ч которого з.чряжена отрицательно, а другая положительно. Подоб юе взаимодействие возникает при погружении металла пе только в чистую воду, но и в раствор электролита.  [c.16]

Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действигельную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан на том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий собой электрод из черненой (платинированной) платины, погруженный в раствор кислоты с активностью ионов Н+, равной 1 г пон1л. Через раствор продувается водород под давлением 1,01.3-10 н м -. Пузырьки водорода адсорбируются на платине, образуя как бы водородную пластинку, которая, подобно металлу, обменивает с раствором положительные ионы. На рис. 10 показано, как составляется цепь из водородного электрода и другого электрода при измерении относительных электродных потенциалов.  [c.23]

В частности, все процессы коррозии технических конструкционных металлов, как в нейтральных растворах электролитов, так и в атмосферных условиях, а также многие процессы растноре-иия металлов в слабокислых растворах в присутствии кислорода идут главным образом за счет катодного процесса ионизации 1 ис.,юрода.  [c.38]


Перенапряжение водорода зависит от pH раствора, концентрации раствора электролита, от наличия или отсутствия в растворе иоверхностпо-активных веществ, температуры и др. При повышении температуры перенапряжение водорода снижается, что указывает на облегчение водородной деиоляризации. Для металлов с высоким перенапряжением (свинец, ртуть и др.). Это снижение составляет ириблизнтелыю 2—4 мв на градус.  [c.44]

Возникновение пассивного состояния зависит от природы металла, его свойств, характера агрессивной среды, концентрации раствора электролита, температуры, движения раствора и целого ряда других факторов. Легко пассивирующимися металлами являются алюминий, хром, никель, титан, вольфрам, молибден и др.  [c.60]

Из всего многообразия факторов, влияющих на электрохимический процесс коррозии, весьма важным является водородный показатель раствора электролита, т. е. характеристика активности в ием водородных ионов. Усиление или ослабление коррозионного процесса часто является функцией от активности ионов водорода в растворе. Уменьшение pH раствора, т. е. увеличение активности ионов Н+-приводит обычно к возрастанию скорости коррозии, так как потенциалы водородного и кислородного электродов делаются более иоложительиымл к катодные процессы водородной и кислородной деполяризации облегчаются. Примером такого влияния pH на скорость коррозии может СЛУЖИТЬ сильное ускорение растворения многих металлов (же-  [c.69]

Ха шктер коррозии металлов и сплавов в почвсиш.кх условиях отличен от коррозии в растворах электролитов и в атмосферных условиях, поскольку процессы подземной коррозии металлов в большинстве случаев протекают при недостаточной аэрации, а разрушения носят местный характер. Язвенный характер коррозии, в частности подземных магистральных газоироводов.  [c.191]

Нормальный электродный потенциал циркония —1,53 в (Zr = Zr + -Ь Зе). Высокая коррозионная стойкость циркония в растворах электролитов объясняется наличием на его поверхности защитной пленки, состоящей из двуокиси циркония Zr02- Под действием хлорной и бромной воды при комнатной температуре цирконий становится хрупким.  [c.289]

Торможение катодного процесса основано или на обсскнело-рожннании раствора электролита с целью умеиьщения скорости коррозии металлов с кислородной деполяризацией, или на повышении перенапряжения катодного процесса. Характерными примерами обескислороживания агрессивной среды являются спо-собы обработки котловой воды различными поглотителями кис.ю рода.  [c.313]

По механизму защиты различают металлические покрытш( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе основной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как иравило, обладают сравнительно низкой коррозионной стойко-  [c.318]

Взаимодействие твердых частиц с электролитом. Влияние твердых частиц на электропроводность электролита было использовано для определения. размера твердых частиц. Принцип Коултера [838] использует изменение сопротивления раствора электролита, залитого между двумя электродами, в отверстии площадью А, при прохождении твердой частицы через это отверстие вследствие взаимодействия с электролитом. Изменение сопротивления электролита АМ определяется выражением  [c.470]


Смотреть страницы где упоминается термин Растворы электролитов : [c.12]    [c.197]    [c.17]    [c.55]    [c.171]    [c.173]    [c.331]    [c.23]    [c.24]   
Смотреть главы в:

Теплоэнергетика и теплотехника Общие вопросы Книга1  -> Растворы электролитов

Коррозия химической аппаратуры и коррозионностойкие материалы  -> Растворы электролитов



ПОИСК



71 —Составы растворов л режимы травления различных материалов электролитов и режимы анодного травления сталей

76 — Составы растворов и режимы электролитов и режимы активации

80 — Назначение 1.79 — Применяемые растворы 1.79 — Составы электролитов и режимы обезжиривания

Адгезия в растворах электролитов

Амирханов. Закономерности изменения растворимости солен в присутствии в растворе других электролитов

Амирханов. Предвидение растворимости хорошо растворимой соли в растворах электролитов с общими ионами

Ванны и устройства, применяемые при полировании растворами и электролитами

Влияние скорости движения раствора электролита

Водные растворы электролитов

Водные растворы электролиты диссоциация

Вычисление коэффициентов активностей электролитов в концентрированных смешанных раствоЭлектрическая проводимость растворов электролитов

Гордона эмпирическое уравнение для коэффициентов диффузии в растворах электролитов

Диффузия в растворах электролитов

Добавки к растворам и электролитам

Другие лабораторные методы испытания на изнашивание Васильев. Испытание материалов на изнашивание при трении в водных растворах электролитов

Изучение действия на металлы водных растворов электролитов

Испытания в растворах электролитов

Коррозионно-усталостная прочность стали в растворах электролитов

Коррозия термохромированных изделий в водных растворах электролитов

Коэффициент активности растворенных электролита моляльный

Коэффициенты активности электролитов в водных растворах

Наводороживание и его предотвращение в растворах электролитов

Некоторые вопросы теории растворов электролитов

Некоторые сведения о металлах и растворах электролитов

Оглвление Приборы, применяемые при изучении свойств растворов и электролитов

Особенности строения растворов электролитов

Очистка растворов никелевого электролита

Подвижность ионов в растворах сильных электролитов

Прибор для корректирования состава электролитов и растворов

Приготовление водного раствора электролита, поступающего на очистку

Приемка химикатов, применяемых при составлении электролитов и растворов

Применение метода светорассеяния для исследования растворов полимеров, белков и электролитов

Процессы, протекающие па границе металл — раствор электролита

Равновесие на границе металлического электрода в растворе электролита

Раствор сильных электролитов

Растворимость электролитов в смешанных растворах

Расчеты, связанные с приготовлением растворов и электролитов

Розенфельд. Метод определения характера и степени отклонения от стехиометрии поверхностных окислов на металлах в растворах электролитов

Роль электрохимических факторов при коррозионной усталости стали в растворах электролитов

Составы и основные неполадки электролитов и растворов для нанесения покрытий

Сплавы Химико-механическая обработка в растворах электролитов

Теория коррозионных процессов в растворах электролитов

Теория коррозионных процессов в растворах электролитов и грунтах

Теплопроводность жидких растворов электролитов

Удаление недоброкачественных медных покрытий — Составы растворов электролитов и режимы работы

Унифицированная технологая очистки растворов электролитов от примесей тяжелых металлов

Химико-механическая обработка твёрдых сплавов в растворах электролитов

Электролит

Электролит концентрированный раствор

Электролиты оловянироьания борфтористоводородные — Их составь: и режимы осаждения 1.203, 204 — Приготовление растворов

Электролиты оловянироьания борфтористоводородные — Их составь: и режимы осаждения 1.203, 204 — Приготовление растворов осаждения 1.200, 201 — Неполадки

Электропроводность водных растворов электролитов

Электропроводность растворов электролитов



© 2025 Mash-xxl.info Реклама на сайте