Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловая и молекулярная физика

ТЕПЛОВАЯ И МОЛЕКУЛЯРНАЯ ФИЗИКА  [c.10]

Тепловая и молекулярная физика 11  [c.11]

Всего Энциклопедия содержит 54 тома и издана в 78 книгах, вышедших в свет с 1955 по 1982 г. Все тома разбиты на одиннадцать групп. В первую группу (математические методы) входят 1-й и 2-й тома во вторую группу (принципы теоретической физики) — тома 3-й (в трех книгах), 4-й и 5-й (в двух книгах) в третью группу (механическое и тепловое поведение материи) — тома 6-й, 6-й,а (в четырех книгах), 7-й (в двух книгах), 8-й (в двух книгах), 9-й, Ш-й, 11-й (в двух книгах) и 12-й — 15-й в четвертую группу (электрическое и магнитное поведение материи) — тома 16-й, 17-й, 18-й (в двух книгах) и 19-й — 20-й. В пятую группу (оптика) входят тома 24-й, 25-й (в пяти книгах) и 26-й — 29-й в шестую группу (рентгеновские и корпускулярные лучи) — тома 30-й — 34-й в седьмую группу (атомная и молекулярная физика) — тома 35-й, 36-й и 37-й (две книги) в восьмую группу (физика атомного ядра) — тома 38-й (в двух книгах), 39-й, 40-й, 41-й (в двух книгах) и 42-й — 45-й в девятую группу (космические лучи) — 46-й том (в двух книгах) в десятую группу (геофизика) — тома 47-й, 48-й и 49-й (в шести книгах). Последнюю одиннадцатую группу (астрофизика) составляют тома 50-й — 54-й. С 1955 по 1960 г. включительно вышло 44 книги, с 1961 по 1970 г.— 21 книга, с  [c.567]


Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]

Коэффициенты X и D зависят от физических свойств среды и температуры. Из молекулярной физики известно, что для газов все коэффициенты переноса (ц, к и D) возрастают вместе со средней тепловой скоростью молекул, т. е. с абсолютной температурой среды.  [c.14]

До последнего времени словом теплота пользуются для обозначения теплового движения, внутренней энергии и молекулярно-кине-тической энергии. Советский физик К. А. Путилов [3] указал, что отождествление теплоты с энергией противоречит первому закону термодинамики, согласно которому теплота равна сумме изменений внутренней энергии и работы. Так как работа зависит от пути процесса, то, следовательно, и теплота также должна зависеть от пути процесса. Основным же свойством энергии является то, что изменение ее не зависит от пути перехода системы из одного состояния в другое. Поэтому мысль о теплоте, как и о работе, должна быть ассоциирована с представлением о процессе, сущность которого состоит в передаче энергии от одного тела к другому. Таким образом, теплота и работа представляют две формы передачи энергии от одного тела (или системы) к другому. Действительно, процесс работы возможен при наличии не менее двух тел, из которых одно развивает  [c.6]

Молекулярную сущность тепловых явлений позволяет выяснить молекулярно-кинетическая теория теплоты, носящая название статистической физики (или статистической термодинамики), которая оперирует законами механики и теории вероятности. При изучении тепловых явлений термодинамика и статистическая физика дополняют одна другую.  [c.8]

В своем капитальном труде Н. С. Курнаков рассматривает измеримые физические свойства веществ, применяемые в физико-химическом анализе. Общее число таких свойств достигает 30. Среди них тепловые свойства — плавкость и растворимость, теплота образования, теплоемкость, теплопроводность электрические свойства — электрическое сопротивление, электродвижущая сила, термоэлектрическая сила, диэлектрическая проницаемость объемные свойства — удельный вес и удельный объем, объемное сжатие, коэффициент теплового расширения. При физико-химическом анализе измеряются также основные оптические свойства объектов исследования, свойства, основанные на молекулярном сцеплении (вязкость, твердость, давление истечения, поверхностное натяжение и др.)) магнитные свойства и многие другие. В физико-химическом анализе широко применяется изучение микроструктуры систем, позволяющее определить их фазовый состав. В последние десятилетия физико-химический анализ пополнился таким важным методом исследования, как рентгенография, который позволяет установить параметры и структуру кристаллографических решеток твердых фаз изучаемой системы  [c.159]


Наиболее существенную роль в теплотехнике играют тепловые и тепломеханические процессы, поэтому основным содержанием технической термодинамики является термодинамический анализ этих процессов с привлечением необходимых сведений из молекулярной и статистической физики. Важную роль в теплотехнике играют и многие химические процессы, в первую очередь —процессы горения. Соответственно этому техническая термодинамика содержит в себе и термодинамический анализ химических процессов, сочетающийся со сведениями из области химической кинетики и статистической физики. В теплотехнике вообще, а в промышленной теплотехнике особенно, приходится иметь дело с уста-6  [c.6]

Первые три осн. единицы (метр, килограмм, секунда) позволяют образовывать согласованные производные единицы для всех величин, имеющих механич. природу, остальные добавлены для образования производных единиц величии, не сводимых к механическим ампер — для алектрич. и магн. величин, кельвин — для тепловых, кандела — для световых и моль — для величин в области молекулярной физики и химии.  [c.82]

Система СГС, как уже отмечалось, была распространена и на другие области явлений. Однако при этом число основных единиц ужб не ограничивалось тремя и в каждой области использовалась еще одна основная единица. Для тепловых единиц к сантиметру, грамму и секунде был добавлен градус Цельсия, для световых единиц — люмен, для единиц молекулярной физики — моль.  [c.80]

Для более четкого представления о процессах, происходящих при получении необходимого вакуума в различных частях масс-спектрометра, необходимо вспомнить некоторые положения и. закономерности из, области молекулярной физики. Тепловое движение молекул идеального газа при комнатной температуре происходит со скоростью около нескольких километров в секунду, а частота столкновений молекул между собой и со стенками сосуда зависит от числа молекул в единице объема, от диаметра молекул, температуры и размеров сосуда. Длина пути молекулы между ее соударениями с другими молекулами также зависит от указанных параметров.  [c.95]

Число основных величин системы в принципе мол<ет быть любым. Однако опыт показал, что для каждой системы число основных величин должно быть вполне определенным, чтобы система была наиболее удобной. Так, систему величин механики целесообразно строить на трех основных величинах, систему тепловых величин — на четырех, систему величин молекулярной физики — на пяти основных величинах и т. д. Система величин, охватывающая все разделы физики, гложет быть построена на семи основных величинах.  [c.8]

Хотя в течение многих лет экспериментальное исследование пограничного слоя проводилось при малых числах М. развитие последующих работ идет в направлении исследования течений с большими дозвуковыми и сверхзвуковыми скоростями [5], причем тщательно изучается теплопередача. При малых числах М в пограничном слое тепловые потоки не существенны и экспериментальные исследования в основном сводятся к измерению трения, при этом нет особой необходимости пользоваться кинетической теорией. В сверхзвуковом потоке тепловые явления уже существенны. Движение в пограничном слое при больших числах М представляет особый интерес для молекулярной физики, так как при этом происходит превращение энергии массового движения молекул в энергию беспорядочного движения при постоянном давлении.  [c.180]

В корпускулярных моделях изучаются физические свойства тел в зависимости от их строения, сил взаимодействия между образующими тела молекулами, атомами и ионами, от характера теплового движения этих частиц. Методы исследования этих процессов широко используются в различных разделах молекулярной физики.  [c.8]

Приблизительно в те же годы (середина XIX столетия) общее признание физиков получила и молекулярно-кинетическая теория строения вещества, согласно которой тепловая энергия обусловливается неупорядоченным движением мельчайших тел—молекул. Механическая энергия — это энергия упорядоченного движения больших тел. Отсюда и вытекает, что при исчезновении определенного количества энергии одного какого-либо вида (например, тепловой) возникает равное ей количество энергии другого вида (например, механической). В таком случае, если исчезает количество тепла Q и совершается работа IV, то  [c.69]


ДИНАМИКА РАЗРЕЖЕННЫХ ГАЗОВ, раздел газовой динамики, в к-ром при изучении течения газа низкой плотности учитывается его дискретная мол. структура. Методы Д. р. г., основанные на молекулярно-кинетич. теории газов, применяются для определения теплового и силового воздействия газа на поверхности летат. аппаратов, движущихся на больших высотах, а также при расчёте движения газов в вакуумных системах, истечения струй в пр-во с низким давлением и в задачах мол. физики.  [c.159]

Свойства каждой системы характеризуются рядом величин, которые принято называть термодинамическими параметрами. Рассмотрим некоторые из них, используя при этом известные из курса физики молекулярно-кинетические представления об идеальном газе как о совокупности молекул, которые имеют исчезающе малые размеры, находятся в беспорядочном тепловом движении и взаимодействуют друг с другом лишь при соударениях.  [c.7]

Предметом теоретической механики являются материальные тела, представленные своими простейшими моделями и рассматриваемые в связи с изменением их взаимного расположения в пространстве и времени. Такое внешнее движение моделей тел, рассматриваемое в отвлечении от внутренних , молекулярных, атомных и других подобных скрытых движений материи в действительных телах, называют механическим движением и противополагают общим движениям материи (тепловым, электрическим, магнитным и другим), изучаемым в физике.  [c.7]

Гипотеза тепловой смерти встретила энергичные возражения со стороны передовых физиков и философов-материалистов. К ней в полной мере можно отнести слова Ф. Энгельса Проблема не решена, а только поставлена, и это преподносится как решение [55]. Полное понимание сущности второго начала термодинамики и вместе с этим решение проблемы тепловой смерти пришло на пути глубокого проникновения в сущность понятия теплоты, на пути уточнения основ и развития молекулярно-кинетической теории. И снова на переднем крае физики Л. Больцман. Его исследование сущности второго начала привело к глубочайшей революционной ломке взглядов на характер физических закономерностей.  [c.80]

Разрушение материала — весьма сложный процесс, даже в случае идеализированного макроскопически однородного изотропного материала. Начало разрушения зависит от присущих материалу свойств (таких, как молекулярная и зернистая структура), от геометрии структуры и ее локальных характеристик (таких, как трещины и концентраторы напряжения) и от последовательности воздействия внешних нагрузок (т. е. механических, тепловых, химических и др.). Современный аппарат математики и физики для установления связи между этими факторами имеет ограниченные точность и сферу применения.  [c.206]

О прочности не менее выдающуюся роль, чем статистическая физика—для учения о молекулярных и тепловых явлениях .  [c.540]

В 1896 г. английский физик Рэлей показал, что ...смесь двух газов различных атомных весов может быть частично разделена, если заставить смесь продиффундировать через пористую перегородку в вакуум . В методе газовой диффузии, примененном для разделения изотопов урана, используются различие в скоростях теплового движения тяжелых и легких молекул и закономерности молекулярного течения газа через тонкие пористые перегородки, в которых размер пор или капиллярных каналов меньше, чем средняя длина свободного пробега молекул. Попадая в эти поры, молекулы гексафторида и между собой почти не сталкиваются, а проходят через перегородку, взаимодействуя только со стенками капиллярного канала, при этом какая-то часть молекул не пройдет, а, отразившись от стенки, вернется в исходный объем.  [c.259]

Точное определение параметров элементарной ячейки имеет большое практическое значение при изучении состава, структуры и физико-химических свойств многих кристаллических материалов, особенно металлов и сплавов. Так, непрерывная регистрация изменений параметров решетки по мере изменения температуры позволяет определить коэффициент теплового расширения. Зависимость параметров элементарной ячейки от наличия примесей в исследуемом веществе дает возможность определить состав твердых растворов и фазовые границы на диаграммах равновесия. С помощью точно измеренных размеров элементарной ячейки можно определить плотность, а также молекулярные веса кристаллов. Даже весьма незначительные изменения параметров решетки позволяют выявить причины появления внут-  [c.46]

В последние десятилетия значительно возрос интерес к исследованию тепловых эффектов смешения жидкостей. Систематизация экспериментальных данных о теплотах (энтальпиях) смешения имеет значение, в первую очередь, для дальнейшего развития молекулярной теории растворов. Теплоты смешения являются основными энергетическими характеристиками раствора, их величины непосредственно связаны с энергиями межмолекулярных взаимодействий в жидкой фазе. Анализ зависимости теплот смешения от концентрации и температуры для растворов различных классов часто позволяет сделать заключение о характере молекулярных процессов сопровождающих образование раствора, — в этом смысле исследование теплот смешения можно рассматривать как один из эффективных методов физико-химического анализа жидких систем.  [c.3]

Последовательность различных курсов как общей, так и теоретической физики определяется прежде всего постепенным переходом к изучению все более сложных форм движения соответствующих структурных видов материи (макротела, молекулы, атомы, элементарные частицы и поля). Механика изучает закономерности простейшей формы движения — относительного перемещения тел в пространстве во времени. Термодинамика и статистическая физика рассматривают явления, обусловленные совокупным действием огромного числа непрерывно движущихся молекул или других частиц, из которых состоят окружающие н с тела. Благодаря очень большому количеству частиц беспорядочное их движение приобретает новые качества макроскопические свойства систем из большого числа частиц в обычных условиях совершенно не зависят от начального положения этих частиц, в то время как механическое состояние системы существенно зависит от начальных условий. Это один из примеров диалектического закона перехода количестЕ енных изменений в качественные возрастание количества механически движущихся частиц в системе порождает качественно новый вид движения — тепловое движение. Тепловое движение представляет собой изменения системы, обусловленные ее атомистическим строением и наличием огромного числа частиц оно связано с молекулярным механическим движением, но этим не исчерпывается его сущность. Всякое движение, — писал Ф. Энгельс, — заключает в себе механическое движение, перемещение больших или мельчайших частей материи познать эти механические движения является первой задачей науки, однако лишь первой ее задачей. Но это механическое движение не исчерпывает движения вообще. Движение — это не только перемена места в надмеханических областях оно является также и изменением качества. Открытие, что теплота представляет собою некоторое молекулярное движение, составило эпоху в науке. Но если я не имею ничего другого сказать о теплоте кроме того, что она представляет собой известное перемещение молекул, то лучше мне замолчать . Определяющим для возникновения теплового движения является не механическое движение от-  [c.7]


Формально в СГС входят только геометрические, механические, электрические и электромагнитные единицы, поскольку в ней присутствуют только три основные единицы — сантиметр, грамм и секунда. Однако во всех исследованиях, охватьшающих тепловые явления, используется единица температуры кельвин. Кроме того, в молекулярной физике и химии число частиц (по современной терминологии - количество вещества) имеет в качестве единицы моль. В светотехнике к единицам СГС добавляется единица светового потока люмен. Образованная таким образом светотехническая система едишщ ранее обозначалась СГСЛ.  [c.58]

В книге кратко излагаются основы технической термодинамики применительно к программе соответствующего курса для студентов-заочников теплотехнических специальностей высших учебных заведений, утвержденной Министерством высшего и среднего специального образования. Термодинамический метод исследования тепловых, тепломеханических и химических процессов сочетается в книге с испольдо-ванием необходимых сведений из области молекулярной и статистической физики.  [c.2]

В области тепловых явлений к единицам длины, массы и времв ни в качестве чехвертой основной единицы добавляется единица термодинамической температуры — кельвин, а в молекулярной физике, кроме того, и единица количества вещества — моль (табл. П4),  [c.43]

Хотя формально основными в системе СГС являются три единицы сантимстр, грамм и секунда, фактически при описании тепловых явлений всегда в качестве четвертой единицы вводится единица температуры кельвин, в светотехнике — единица светового потока люмен, в молекулярной и атомной физике — единица количества вещества моль и т. п.  [c.46]

Клауаиус ( lausius) Рудольф Юлиус Эмануэль (1822-1888) — немецкий физик, один из основателей термодинамики и молекулярно-кинетической теории теплоты. Дал (одновременно с У. Томсоном) в 1850 г. первую формулировку второго начала термодинамики. Придерживался гипотезы У. Томсона о тепловой смерти Вселенной. Ввел первым понятие энтропии (1865 г.) идеального газа, длины свободного пробега молекул. Обосновал в 1850 г. уравнение Клапейрона — Клаузиуса. Доказал (1870 г.) теорему вириала, связывающую кинетическую анергию системы частиц с действующими силами. Разработал теорию поляризации диэлектриков (формула Клаузиуса — Моссоти).  [c.264]

Явление Р. р. г.-л. можно использовать при иссле дочании нек-рых вопросов молекулярной физики i физики твердого тела. Напр., этим методом была ис следована форма доплеровской (тепловой) у-линю в твердом теле, а также ироцессы торможения атомог (молекул) отдачи в газах, жидкостях и твердых телах влияние хим. связи на процессы отдачи (см. также Мёссбауэра эффект).  [c.400]

Иногда количество тепла условно называют тепловой энергией, хотя под тепловой энергией в молекулярной физике понимают энергию теплового движения молекул. Но эта энергия составляет лишь часть внутренней энергии, представляющей совокупность микрострук-турной (ми ироиинетичеокой) и микропотенциальной энергии (т. е. энергии взаимодействия молекул или энергии молекулярных связей).  [c.15]

Сложные физические объекты могут быть описаны с разной степенью подробности, и не только потому, что точное описание требует больших усилий или большего объема компьютерных расчетов. Весь наш опыт показывает, что при взаимодействии с внешним миром физические объекты никогда не раскрывают весь свой внутренний потенциал сложности. Соответственно, неполное или даже феноменологическое описание физических явлений или физических объектов иногда лучше отвечает и сути дела, и пониманию того, что происходит. В особенности, это относится к коллективным явлениям, когда огромное количество частиц оказывается вовлеченным в общеколлективное движение. Так, например, газодинамика лучше и более адекватно описывает ветровые потоки, чем просто молекулярная динамика. Точно так же процессы, связанные с тепловым движением атомов, лучше и более доступно для понимания описываются термодинамикой и статистической физикой. Можно сказать и по-другому существуют физические явления, для которых неполное  [c.92]

Как известно из общего курса физики, материальные тела обладают сложной молекулярной структурой, причем молекулы среды совершают тепловые движения хаотичные в газах, более или менее упорядоченные в жидкостях и аморфных телах и колебательные в кристаллических решетках твердых тел. Эти внутренние движения определяют физические свойства тел, которые в модели сплошной среды задаются наперед основными феноменологическими закономерностями (например, законы Бойля — Мариотта, Клапейрона — в газах, законы вязкости — в ньютоновских и неиыотоповских жидкостях, закон Гука — в твердых телах).  [c.103]

В энергетическом отношении атомно-водо-родпая сварка является в основном методом электрической сварки, при котором обратимые физико-химические процессы, протекающие в газовой атмосфере вольтовой дуги, способствуют наиболее эффективному развитию и использованию её тепловой мощности. Независимость источника тепла в сочетании с возможным широким диапазоном регулирования тепловой мощности пламени непосредственно в процессе сварки создает большую гибкость технологического процесса. Высокая температура атомно-водородного пламени позволяет применять его для сварки наиболее тугоплавких металлов. Восстановительные свойства молекулярного и особенно атомного водорода и его химическое взаимодействие с азотом являются условиями для наиболее эффективной защиты расплавленного металла от окисления и нитрирования.  [c.318]

ТЕПЛОЕМКОСТЬ (решеточная — теплоемкость, связанная с поглощением теплоты кристаллической решеткой удельная— тепловая характеристика вещества, определяемая отношением теплоемкости тела к его массе электронная — теплоемкость металлов, связанная с поглощением теплоты электронным газом) ТЕПЛООБМЕН (излучением осущесгв-ляется телами вследствие испускания и поглощения ими электромагнитного излучения конвективный происходит в жидкостях, газах или сыпучих средах путем переноса теплоты потоками вещества и его теплопроводности теплопровод-ноетью проходит путем направленного переноса теплоты от более нагретых частей тела к менее нагретым, приводящего к выравниванию их температуры) ТЕПЛОПРОВОДНОСТЬ (решеточная осуществляется кристаллической решеткой стационарная характеризуется неизменностью температуры различных частей тела во времени электронная — теплопроводность металлов, осуществляемая электронами проводимости) ТЕПЛОТА (иенарения поглощается жидкостью в процессе ее испарения при данной температуре конденсации выделяется насыщенным паром при его конденсации образования — тепловой эффект химического соединения из простых веществ в их стандартных состояниях плавления поглощается твердым телом в процессе его плавления при данной температуре сгорания — отношение теплоты, выделяющейся при сгорании топлива, к объему или массе сгоревшего топлива удельная — отношение теплоты фазового перехода к массе вещества фазового перехода — теплота, поглощаемая или выделяемая при фазовом переходе первого рода) ТЕРМОДЕСОРБЦИЯ — удаление путем нагревания тела атомов и молекул, адсорбированных поверхностью тела ТЕРМОДИНАМИКА — раздел физики, изучающий свойства макроскопических физических систем на основе анализа превращений без обращения к атомно-молекулярному строению вещества  [c.286]


ГИДРОФИЗИКА — наука о физ. свойствах вод1юй оболочки Земли — гидросферы и происходящих в ней процессах, Г. изучает молекулярную структуру воды в трёх её агрегатных состояниях, переходы между этими состояниями, механич. и тепловые свойства воды и льда, их акустич., оитич., электрич. характеристики, разнообразные движения водной среды. Г. как раздел геофизики подразделяется на физику вод суши (или гидрологию суши) и физику моря.  [c.471]


Смотреть страницы где упоминается термин Тепловая и молекулярная физика : [c.784]    [c.16]    [c.9]    [c.394]    [c.38]    [c.442]    [c.27]   
Смотреть главы в:

Справочник авиационного техника Изд.3  -> Тепловая и молекулярная физика



ПОИСК



Молекулярная физика

Молекулярный вес



© 2025 Mash-xxl.info Реклама на сайте