Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства и особенности газовой смеси

СВОЙСТВА И ОСОБЕННОСТИ ГАЗОВОЙ СМЕСИ  [c.26]

Уравнение состояния идеального газа описывает свойства газов лишь при достаточно низких давлениях. При высоких давлениях уравнение состояния идеальных газов перестает быть справедливым. В настоящее время предложено несколько сотен эмпирических (или полуэмпирических) уравнений состояния реальных газов, справедливых в том или ином интервале параметров состояния [85, 114, 119]. Эмпирические уравнения состояния позволяют получить (см. (1.67)) аналитическое выражение для химического потенциала реального газа, описывающее функцию = Р) в той области параметров состояния, в которой применимо соответствующее уравнение состояния. Получаемые соотношения обычно весьма громоздки, и ими неудобно пользоваться. Особенно сложно дальнейшее использование полученных формул для исследования многокомпонентных газовых смесей.  [c.20]


Однако для выяснения свойств смесей и определения их состояния недостаточно одного характеристического уравнения. Необходимо учесть другие особенности, характеризующие газовые смеси, и найти соотношения, которым они подчиняются.  [c.26]

На основании спектроскопических исследований был найден целый ряд активированных конденсированных сред и газовых смесей, обладающих указанными свойствами и открывающих возможность реализации лазеров на их основе. В первую очередь это ионы переходных металлов (лантанидов, актинидов) и благородные газы. На особенностях генерационных свойств некоторых из них остановимся ниже.  [c.70]

Особенности рабочего процесса газовых ДВС определяются видом применяемого топлива. Одним из характерных свойств газа является его высокая детонационная стойкость. Октановые числа газообразных топлив, определенных по моторному методу, находятся в пределах 80—110, что позволяет делать газовые ДВС с высокой степенью сжатия. Большинство горючих смесей газообразных топлив с воздухом имеют более низкую теплоту сгорания, чем горючие смеси жидких топлив с воздухом. Следствием этого является уменьшение мощности двигателя при его переводе на газообразное топливо. Для повышения мощности увеличивают степень сжатия, применяют наддув двигателей, увеличивают частоту вращения и т. д. Газообразное топливо с воздухом образует более равномерную горючую смесь, что создает возможность двигателям с принудительным воспламенением работать с более высоким коэффициентом избытка воздуха а = 1,1 ч-1,4.  [c.243]

При сварке металл всегда контактирует с окружающей средой. Это или газовая фаза (воздух, защитные газы, смеси газов и паров, вакуум и пр.), или шлаковые расплавы (различные окислы, галогениды, их смеси и т. д.), или и газы, и шлаки. В процессе сварки происходит взаимодействие металла, особенно перегретого выше температуры плавления, с этими газами и шлаками. Такое взаимодействие может быть для металла полезным, но в большинстве случаев портит его состав и свойства. Поэтому процессы взаимодействия металла с газами и шлаками при сварке следует обязательно учитывать и по возможности регулировать в нужном направлении.  [c.53]

Разница в окислительных свойствах метана и других углеводородов становится особенно заметной при оценке токсичности выхлопных газов двигателей, использующих в качестве топлива природный газ. Если основными компонентами углеводородной составляющей выхлопных газов бензиновых двигателей являются этан и этилен, то в газовых двигателях основное количество углеводородных выбросов приходится на метан. Это связано с тем, что углеводородная часть выбросов бензиновых двигателей образуется в результате крекинга паров бензина при высоких температурах, имеющих место в несгорающей части смеси. В газовом же двигателе несгорающий метан никаким преобразованиям не подвергается, что и приводит к отличающемуся составу углеводородной части выхлопа.  [c.239]


Как уже указывалось, особенностью гидрогенизированного аморфного кремния является возможность эффективного управления его электрическими свойствами легированием донорной или акцепторной примесью. Зависимость удельной электропроводности о гидрогенизированного аморфного кремния при комнатной температуре от состава газовой смеси показана на рис. 7 (на оси ординат отложены соотношения концентраций N диборан — силан и фосфин — силан). Пленки а-51 Н наносились раз,ложением силана в тлеющем разряде количество легирующей примеси регулировалось контролируемым изменением содержания в газовой смеси фосфина и диборана (соответственно при легировании фосфором и бором). Как видно из рис. 7, нелегированный гидрогенизирован-  [c.17]

Особенно остро ставится вопрос об устойчивости горения при сжигании так называемых бедных газов, содержащих высокий процент балласта. Актуаяьность этого вопроса связана с необходимостью использования в качестве топлива (или сжигания с целью обезвреживания) отбросных газов, получающихся в больших количествах на некоторых предприятиях, например на химических, сажевых и других заводах. Указанные газы в большинстве случаев принадлежат к категории медленно горящих газов и вопрос о возможности их устойчивого сжигания является весьма сложным. Его можно решать только на базе комплексного анализа следующих факторов физико-химических (горючие свойства газа), режимных (начальная температура газа и воздуха, диапазон допустимого изменения избытков воздуха и скоростей истечения смеси) и конструктивно-аппаратурных (стабилизирующая способность газовой горелки).  [c.60]

В последнее время особый интерес проявляется к двухфазным средам. Двухфазные среды представляют собой смеси, в которых одно вещество присутствует в двух агрегатных состояниях, например газообразном и жидком (пар с каплями жидкости или жидкость с паровыми пузырьками). Изучение законов движения таких сред невозможно без привлечения молекулярной физики и, в частности, кинетики фазовых превращений. Жидкости и газы (или пары жидкостей) широко используются в качестве теплоносителей в энергетике. Процессы тепломас-сопереноса составляют важнейшую особенность движения жидкостей и газов в элементах энергетических установок. В теплоэнергетике существенную роль играют также процессы движения газовых смесей при горении (например, в камерах сгорания газотурбинных двигателей, в топочных устройствах котлов), сопровождающиеся изменением их физических свойств.  [c.8]

На окисление силицидов существенно влияют не только свойства самих соединений и температура испытаний, но и состав газовой среды, в особенности парциальное давление кислорода. Так, поданным работы [10, с. 20], при парциальных давлениях кислорода ниже 55 мм рт. ст. окисление дисилицида молибдена значительно ускоряется. Это обусловлено тем, что в условиях высоких температур и низких давлений кислорода образуется не защитная пленка ЗЮз, а летучая моноокись кремния. По данным работы [290], при изучении окисления Мо512 при 450—600"" С в средах N2, СО2, СО и Аг образцы не разрушались. При испытании в смеси аргона с кислородом было обнаружено увеличение скорости разрушения поликристаллических образцов дисилицида с повышением парциального давления кислорода. Нагрев монокристаллов Мо512 в чистом кислороде при 500° С и давлении 1 ат в течение 160 и 420 ч не дал никаких следов разрушения.  [c.254]

На свойства и параметры покрытия (микротвердость, толш,ину, фазовый состав, структуру) оказывают влияние концентрация компонентов парогазовой смеси, давление смеси и скорость ее подачи, исходная чистота компонентов смеси. Особенно вредно присутствие активных реагентов типа Ог, Н2О, N. которые приводят к охрупчиванию покрытия, снижению прочности его сцепления с твердым сплавом, резкому изменению физико-механических и теплофизических свойств покрытия. Поэтому к чистоте исходных компонентов газовой смеси предъявляют особые условия.  [c.16]

Изучение важнейших физико-химических механизмов в условиях турбулентного течения многокомпонентной реагирующей газовой смеси, ответственных за пространственно-временные распределения и вариации определяющих макропараметров (плотности, скорости, температуры, давления, состава и т.п.), особенно эффективно в сочетании с разработкой моделей турбулентности, отражающих наиболее существенные черты происходящих при этом физических явлений. Турбулентное движение в многокомпонентной природной среде отличается от движения несжимаемой однородной жидкости целым рядом особенностей. Это, прежде всего, переменность свойств течения, при которой среднемассовая плотность, различные теплофизические параметры, все коэффициенты переноса и т.п. зависят от температуры, состава и давления среды. Пространственная неоднородность полей температуры, состава и скорости турбулизованно-го континуума приводит к возникновению переноса их свойств турбулентными вихрями (турбулентный тепло- и массоперенос), который для многокомпонентной смеси существенно усложняется. При наличии специфических процессов химического и фотохимического превращения, протекающих в условиях турбулентного перемешивания, происходит дополнительное усложнение модели течения. В геофизических приложениях часто необходимо также учитывать некоторые другие факторы, такие, как влияние планетарного магнитного поля на слабо ионизованную смесь атмосферных газов, влияние излучения на пульсации температуры и турбулентный перенос энергии излучения и т.п. Соответственно, при моделировании, например, состава, динамического и термического состояния разреженных газовых оболочек небесных тел теоретические результаты, полученные в рамках традиционной модели турбулентности однородной сжимаемой жидкости, оказываются неприемлемыми. В связи с этим при математическом описании средних и верхних атмосфер планет возникает проблема разработки адекватной модели турбулентности многокомпонентных химически реагирующих газовых смесей, учитывающей сжимаемость течения, переменность теплофизических свойств среды, тепло- и массообмен и воздействие гравитационного поля и т.п. Эти проблемы рассматриваются в данной части монографии.  [c.9]


Инертные газовые смеси состоят, как правило, из аргона и гелия. Обладая большей плотностью, чем гелий, такие смеси лучше защиш,ают металл сварочной ванны от воздуха. Особенно хорошими защитными свойствами обладает инертная газовая смесь, состоящая из 70 об. % аргона и 30. об.% гелия. Плотность такой смеси близка к плотности воздуха. Для сварки химически активных металлов находит применение инертная смесь, содержащая 60—65 об. % гелия, а остальное аргон. Инертные газовые смеси хотя заметно дороже, чем аргон, но превосходят его по интенсивности выделения теплоты электрической дуги в зоне сварки. Это имеет существенное значение при сварке металлов с высокой теплопроводностью.  [c.368]

Газовая К. сталей представляет особенный практич. интерес, т. к. стали (и никелевые сплавы) лучше других металлов сохраняют механическ. свойства при высоких 1° и поэтому могут в этих условиях широко применяться. Скорость К. в очень большой степени зависит от химич. состава сталей. Вообще металлич. примеси, дающие с основным металлом твердые растворы, увеличивают стойкость последнего, в особенности если сами примеси способны давать хорошие защитные плепки. Наилучшее действие оказывает хром, затем никель. Добавки к высокохромистым или к высокохромоникелевым сталям кремния, вольфрама и нек-рых других металлов еще более увеличивают их стойкость. Сплавы с никелевой основой вместо железа сопротивляются окислению лучше сталей (нихромы). Железоалюминиевые сплавы и железокремнистые сплавы при высоком содержании алюминия и кремния хорошо сопротивляются окислению при не слишком высоких 1° вследствие образования прочных пленок окислов. Вообще каждый металл и сплав обнаруживает специфические свойства по отношению к различным газовым смесям и различным °-ным условиям.  [c.51]

При наличии химических реакций в пограничном слое необходимо учитывать дополнительное выделение и поглощение тепла внутри слоя. В этих случаях кроме совокупности уравнений пограничного слоя нужно рассматривать уравнения, определяющие условия протекания химических реакций. Рассматривая движение смеси газов в целом, нужно иметь в виду, что физические параметры смеси р, fi, %, D, Ср будут зависеть от состава, давления и температуры смеси. Определение этих параметров (особенно характеризующих переносные свойства газовых смесей) связано с некоторыми предположениями, которые делаются заданием потенциалов взаимодействия при столкновении частиц различных типов. Ряд предположений приходится делать при задании кннетики химических реакций. ГТоэтому расчеты (даже в случае ламинарного режима течения в пограничном слое) должны обязательно сопоставляться с экспериментальными данными. Кроме того, при высоких температурах появляется еще выделение и поглощение тепла путем излучения. Влияние излучения в воздухе растет при увеличении температуры и особенно существенно при скоростях полета более 10 км/с. Во многих случаях влияние излучения иа конвективный теплообмен невелико, при этом лучистый и конвективный потоки могут рассчитываться независимо. В главе весь анализ приводится для ламинарного пограничного слоя, одиако полученные выводы могут использоваться и для расчета турбулентного пограничного слоя.  [c.176]

Сведения о свойствах и свариваемсх ти чугуна были изложены в главе XIV. Здесь рассмотрим технологию газовой сварки чугунных деталей. С помощью газовой горелки можно с успехом производить ремонтную сварку изделий из серого литейного, а также ковкого и высокопрочного чугуна. Более длительный и равномерный нагрев, обеспечиваемый пламенем при газовой сварке, способствует получению в металле шва структуры серого, неотбеленного чугуна, хорошо поддающегося последующей механической обработке. При сварке чугуна образуется достаточно большое количество окислов марганца и особенно кремния, затрудняющих сварку. Для удаления этих окислов в шлаки применяют флюс в виде молотой буры или смеси одного из следующих составов 1) 56% буры, 22% углекислого натрия (соды) и 22% углекислого калия (поташа)  [c.368]

Построение теоргтических моделей, адекватных физической реальности, и создание инженерных методов расчета оборудования с учетом особенностей двухфазных течений невозможно без изучения волновой динамики газо- и парожидкостных сред. Особенности проявления волновых свойств зависят как от состояния и структуры самой среды, так и от амплитуды и частоты вносимых в нее возмущений. При этом предметом изучения становятся релаксационные и диссипативные процессы, происходящие в двухфазных средах при распространении в них волны возмущения. Времена протекания этих процессов, их взаимное влияние определяют эволюцию генерируемых волн в нестационарных условиях, скорость их распространения и интенсивность. Как показали многочисленные эксперименты, в газодинамике двухфазных потоков паро-(газо-) капельной структуры определяющим является обмен количеством движения между молекулами несущей газовой среды и каплями жидкости. При рассмотрении быстропротекающих процессов в смесях жидкости с пузырьками пара и газа определяющими являются инерционные свойства жидкости при внутренних радиальных ее движениях, возникающих в результате взаимодействия молекул газа в пузырьках с прилегающими к ним объемами жидкости При добавлении пузырьков газа мало меняется средняя плотность среды при достаточно малых концентрациях пузырьков, но характер изменения давления меняется существенно.  [c.32]

Выполнение С. При газовой С. следует избегать избытка как горючего газа, так и кислорода. Если ацетилен и кислород смешаны в надлежащей пропорции, то в пламени молшо различить две зоны непосредственно за мундштуком горелки заметна струя несгоревшего газа—темное ядро, окруженное конусом пламени яркожелтого цвета. В этой части пламени ацетилен распадается на углерод и водород. Углерод, сгорая, дает е кислородом из баллона окись углерода. В наружной зоне пламени окись углерода и водород вместе с поступающим из воздуха кислородом образуют двуокись углерода и водяной пар. Конус пламени, помимо окиси углерода и водорода содержит еще несгоревшие углерод и кислород из баллона. Эта часть сварочного пламени вследствие ее обугливающего и окислительного влияния для С. непригодна, как и та часть наружной зоны пламени, к-рая кроме двуокиси углерода и водяных паров содержит еще атмосферные кислород и азот. Для С. пригодна только та часть пламени, в к-рой углерод сгорел полностью и имеется еще достаточное количество водорода, т. е. та часть, к-рая обладает четко выраженными восстановительными свойствами. Эта сварочная зона расположена на расстоянии 2—5 мм от вершины конуса. При С. смесью водорода с кислородом для установления сварочного пламени требуется отношение 4 1. Добиться такого соотношения довольно трудно, т. к. ядро в пламени этой смеси обозначается весьма слабо. Необходимо всегда иметь в виду, что С. является металлургическим процессом, протекающим при высокой В связи с нагревом возникают напряжения и коробления, к-рые необходимо сводить к минимуму. Поэтэ-му продвижение вперед горелки следует вестп т. о., чтобы основной материал свариваемых предметов не нагревался излишне сильно. В этом отношении гл. обр. помогают сноровка сварщика и быстрота выполнения С. Помимо основательного сплавления кромок свариваемых листов и присадочного материала необходимо обращать особенное внимание на проведение правильной С. по всей толще шва и на возможно полцое соединение между основным материалом и присадочным. Признаком хорошо выполненной С. служит равномерно-  [c.104]


Определяет уровень всех важнейших свойств смеси количество ее зависит от содержания гликы, метода уплотнения, степени механизации, конфигурации модели. При низкой влажности уменьшается прочность смеси, затрудняются удаление модели и ремонт форм, получается повышенная осыпаемость форм. Высокая влажность снижает газопроницаемость, уменьшает текучесть, прочность и твердость форм, особенно в поднутрениях и глубоких карманах, создает неравномерь ость свойств по сечению формы, низкое качество поверхности отливок, повышенную склонность к газовым раковинам и ужиминам  [c.399]

Заключая рассмотрение энергетических показателей газовых топлив, отметим важную особенность, состоящую в том, что в природных топливах этого типа энергетические возможности нестабильны и меняются в зависимости от месторождения и периода его разработки. В качестве иллюстрации этого положения в табл. 3 приведены вариации низшей объемной теплоты сгорания, объемной удельной теплоты сгорания стехиометриче-ской газовоздушной смеси и стехиометрического коэффициента, рассчитанные по данным 30 месторождений природного газа. Таблица показывает существенные различия в свойствах природного газа, наблюдаемые по стране.  [c.11]


Смотреть страницы где упоминается термин Свойства и особенности газовой смеси : [c.133]    [c.26]    [c.11]    [c.155]   
Смотреть главы в:

Техническая термодинамика  -> Свойства и особенности газовой смеси



ПОИСК



Газовая газовой смеси

Газовые смеси

Смеси свойства



© 2025 Mash-xxl.info Реклама на сайте