Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гироскопические приборы Гироскоп и его применение

Некоторые технические приложения гироскопа. Гироскопы используются как основной элемент в очень большом числе гироскопических приборов и устройств, имеющих самое разнообразное применение.  [c.339]

Приведенные примеры иллюстрируют лишь основные механические принципы использования гироскопов. Современные гироскопические приборы имеют значительную сферу применения. Эти приборы устроены достаточно сложно, особенно когда они призваны длительно работать с высокой точностью в условиях действия возмущений.  [c.500]


У Широкое применение гироскопических приборов для ориентации движущихся объектов объясняется тем, что гироскоп обладает повышенной сопротивляемостью по отношению к действующим на него моментам внешних сил и в большей мере, чем обычное негироскопическое твердое тело, наделен способностью сохранять направление оси своего ротора неизменным в абсолютном пространстве.  [c.7]

Формула (11) определяет величину гироскопического момента для симметричных гироскопов, которые находят применение в гироскопических приборах и системах.  [c.29]

При этом практическое использование гироскопа Фуко II рода на движущихся объектах возможно лишь с применением прецизионных гироскопических приборов для искусственной его стабилизации в плоскостях горизонта и меридиана.  [c.116]

Глава 3Q. ГИРОСКОПИЧЕСКИЕ ПРИБОРЫ 105. Гироскоп и его применение  [c.358]

В ряде гироскопических приборов, таких, как гирополукомпасы,. указатели направления ортодромии, гиромагнитные компасы, гироскопические акселерометры-интеграторы, также находят применение одноосные гироскопические стабилизаторы для уменьшения их кинематических погрешностей принимаются специальные меры I M. гл. 8). В практических приложениях при малой амплитуде периодических угловых колебаний летательного аппарата и малых относительных углах Др поворота гироскопа можно пользоваться  [c.49]

В связи с проблемой хода корабля на волнении Крылов занялся изучением гироскопических приборов в их применении к целям стабилизации ) и впоследствии выпустил из печати книгу о гироскопах ).  [c.523]

Таким образом, в конце XIX в. произошло зарождение гироскопической техники были созданы или находились в разработке первые гироскопические приборы — гирогоризонт, гироскоп направления, гироскопический компас. На очереди находились и другие важные применения гироскопа.  [c.143]

Впервые свободный гироскоп нашел практическое применение в виде гироскопического прибора для выравнивания курса торпеды, изобретенного в 80-х годах XIX в. австрийским инженером Обри. Ротор его имел карданов подвес, внешняя ось которого удерживалась примерно в вертикальном положении корпусом торпеды. Перед пуском ее ротор разгонялся специальным устройством, а затем работал на выбеге. При отклонении торпеды от заданного курса внешнее кольцо карданова подвеса гироскопа переставляло золотник пневматического регулятора, а последний воздействовал на рули торпеды, возвращая ее на курс. Система действовала в режиме автоколебаний.  [c.167]


Требования, предъявляемые теорией гироскопов к курсу теоретической механики. Как видно даже из нашего краткого обзора, круг вопросов, составляющих современную теорию гироскопов, весьма широк и требует хорошей подготовки по механике. Разумеется, что она должна быть дана не только пунктом 18 программы по теоретической механике для втузов, который сформулирован так 18. Понятие о гироскопе. Кинетический момент быстро вращающегося, гироскопа. Теорема Резаля. Основное свойство гироскопа. Закон прецессии. Гироскопический момент. Определение гироскопических реакций. Примеры применения гироскопа в технике . По нашему мнению, в учебных планах для приборостроительных специальностей этому пункту следует уделить примерно 4—6 часов, на про-тяжении которых следует дать учащимся представление о гироскопических явлениях и проиллюстрировать их приложения на принципе действия простейших гироскопических приборов, описание которых имеется в учебной литературе.  [c.63]

Рис. 149. Вы, вероятно, знаете, что принцип, положенный в основу действия всех гироскопических приборов, заключается в использовании некоторых свойств вращающегося маховика (ротора) Этот рисунок изображает механизм гирополукомпаса Сперри, вынутый из корпуса, и не нуждается в подробных объяснениях. Нормальное положение гироскопа относительно его основания показано внизу слева. Ротор гироскопа вращается динамическим давлением воздуха, поступающего в корпус прибора через два сопла и действующего непосредственно на лопатки (лунки) ротора гироскопа. Применение двух сопел, а не одного имеет целью удерживать ротор гироскопа в одном и том же положении. Каждый раз, когда ротор наклоняется в сторону, как показано в нижней части рисунка, справа, лопатки ротора испытывают большее давление струи воздуха из сопла с этой стороны, и ротор возвращается в нормальное положение. Рис. 149. Вы, вероятно, знаете, что принцип, положенный в основу действия всех <a href="/info/110335">гироскопических приборов</a>, заключается в использовании некоторых свойств вращающегося маховика (ротора) Этот рисунок изображает механизм гирополукомпаса Сперри, вынутый из корпуса, и не нуждается в подробных объяснениях. Нормальное положение гироскопа относительно его основания показано внизу слева. Ротор гироскопа вращается <a href="/info/2443">динамическим давлением</a> воздуха, поступающего в <a href="/info/581093">корпус прибора</a> через два сопла и действующего непосредственно на лопатки (лунки) ротора гироскопа. Применение двух сопел, а не одного имеет целью удерживать ротор гироскопа в одном и том же положении. Каждый раз, когда ротор наклоняется в сторону, как показано в нижней части рисунка, справа, <a href="/info/438299">лопатки ротора</a> испытывают большее <a href="/info/9522">давление струи</a> воздуха из сопла с этой стороны, и ротор возвращается в нормальное положение.
Для повышения точности гироскопического прибора желательно максимальное увеличение кинетического -момента гироскопа. Это возможно как за счет увеличения момента инерции J ротора гиро-мотора, так и за счет повышения числа оборотов . Увеличение момента инерции связано с увеличением размеров ротора, с применением материала с наибольшим удельным весом. Поскольку момент инерции тела относительно оси определяется как произведение массы тела на квадрат радиуса инерции, целесообразно располагать массу ротора как можно дальше от оси его собственного вращения. Именно поэтому гиромоторы электрических гироскопических приборов представляют собой электромоторы обращенного типа, в которых статор находится внутри ротора. Но увеличение массы, а следовательно, и веса ротора приводит к повышению давления на подшипники опор внутреннего и наружного колец карданного подвеса. Это приводит к увеличению момента трения на осях подвеса и к недопустимым по величине уходам чувствительного элемента гироскопического прибора от заданного направления. Поэтому к повышению момента инерции ротора путем увеличения его массы надо подходить осторожно. Может случиться так, что увеличение кинетического момента указанным путем приведет не к повышению, а к понижению точности гироскопического прибора.  [c.14]

В заключение отметим, что благодаря рассмотренным в этом параграфе свойствам гироскопа, он нашел широкое применение в технике. Укажем, например, на гироскопические компасы, гироскопические горизонты и другие гироскопические навигационные приборы, устройство которых основано на устойчивости оси гироскопа.  [c.720]

Другим важным применением гироскопов являются различные гироскопические навигационные приборы гирогоризонт, гирокомпас и т. д. Создание искусственного горизонта является одной из важнейших  [c.457]


Одноосные индикаторно-силовые гироскопические стабилизаторы с поплавковыми гироскопами или датчиками угловой скорости не находят самостоятельного применения в авиации, ракетной технике или морском флоте. Такие приборы, так же как и силовые одноосные гиростабилизаторы, являются составной частью двух- или трехосных пространственных гиростабилизаторов, а также широко используются при испытаниях и исследованиях, например, интегрирующих гироскопов в лабораторных условиях.  [c.288]

Простейшим гироскопическим стабилизатором является астатический гироскоп, нашедший применение в различных приборах систем ориентации, а также при стабилизации спутников в орбитальной системе координат. Книга начинается с рассмотрения принци-  [c.3]

Теория гироскопических приборов и гироста-билиааторов естественно не ограничивается изложением только физической стороны рассмотрения движения гироскопов. В основе изложения теории гироскопов и гироскопических стабилизаторов лежит аналитическое исследование дифференциальных уравнений движения гироскопов. Дифференциальные уравнения движения гироскопов составляются либо с помощью обобщенных уравнений Эйлера, либо на основе Лагранжевых дифференциальных уравнений движения. Кратчайший путь для составления обобщенных уравнений Эйлера достигается применением теоремы моментов количества движения в той ее форме, которую иногда называют теоремой Резаля.  [c.32]

Существуют гироскопические приборы, действие которых основано на применении гироскопов, обладающих двумя степенями свободы. К таким приборам относятся дифференцирующие и интегрирующие гироскопы, а также гирокомпас — деклинометрический гироскоп и гироширот — инклинометрический гироскоп.  [c.97]

При этом определение погрешностей гироскопа в кар-дановом подвесе, помимо тех случаев, когда он находит самостоятельное применение, также имеет решающее значение при расчете точности гироскопических приборов и устройств.  [c.117]

Действие гироскопического эффекта обычно связывают с устойчивостью вращающегося волчка. Удивительная устойчивость, сообщаемая волчку быстрым вращением, уже давно привлекала внимание пытливых умов. Еще около 200 лет назад в английском флоте была сделана попытка использовать это свойство быстро вращающегося волчка для создания на корабле устойчивого искусственного горизонта , могущего заменить в туманную погоду ВИДИМЫ11 горизонт. В наше время гироскопические приборы приобретают все большее значение в различных областях техпикрх. В частности, военная и военно-морская техника оснащены целым рядом приборов, основанных на принципе гироскопа, особенно широкое применение гироскоп получил в авиации.  [c.128]

Названные работы А. Ю. Ишлипского по теории гирогоризонтов позднее вошли в его монографию, опубликованную впервые в 1952 г. Она содержит результаты более чем десятилетних исследований автора и охватыва-164 ет широкий круг вопросов механики, связанных с применением гироскопов. Первые главы монографии посвящены геометрии и кинематике гироскопических систем, а также вопросам ориентации объектов, управляемых гироскопическими приборами. Много внимания уделено изучению новых явлений, связанных с упругостью элементов устройств. В главе, посвященной линейной теории гироскопических систем, кроме общих вопросов и уже упоминавшегося исследования различных гировертикалей, строится еще теория креновыравпивателя и гироскопической рамы. Ряд решаемых автором задач теории гироскопов объединен по тому признаку, что в них существенным является учет нелинейностей в системе. Наконец, в отдельной главе собраны разнообразные исследования, в которых обнаруживаются новые явления, такие, как поклон волчка , ошибки гироскопического интегратора ускорений, ошибки свободного гироскопа на вибрациях. Отметим, что содержащиеся в монографии исследования, как правило, имели целью найти ответ на вопросы теории, возникавшие при создании, испытании и эксплуатации гироскопических устройств, а содержащиеся в ней новые результаты получены в большинстве случаев благодаря тому, что в ходе исследования были выявлены и учтены обстоятельства, ранее считавшиеся несущественными. Стремление к более пристальному изучению механики гироскопических систем путем вскрытия новых факторов в их работе стало характерным для многих исследований последних двадцати лет, образовавших целое направление в прикладной теории гироскопов.  [c.164]

Примеры использования кулачковых механизмов в приборах. Арретиру ющее устройство гироскопического прибора 113. 38 ] включает три операционных кулачковых механизма плоский кулачок 2 и толкатель 3, дисковые кулачки 5 и 7 и толкатели 3 и 4 (рис. 5.28, а). Арретировзние осуществляется в следующей последовательности. Плоский кулачок перемещается в направляющих вдоль оси С—С и вызывает линейное смещение толкателей 9 оказывающих давление на кулачки 5 и 7 и вызывающих пр э (поворот) гироскопа относнтельно осей АЛ и ВВ. При о < нном положении толкатели 3 и 4 входят в углубления кулачков 5 и 7 и фиксируют положение карданных колец 8 и 9 гироскопа. Замыкание кулачков и толкателей осуществляется с помощью пружин 1 и 6. В указателе высоты 112, 24] (рис. 5.28, б) применен функциональный кулачковый механизм. Он используется в следящей  [c.264]

Измерительныеприборы,содержащие чувствительный элементв внде инерционной массы, используются главным образом 1шя определения параметров поступательного движения объектов - ускорения, скорости, пройденного пути. По этой причине их называют также датчиками линейных перемещений. Как будет показано, датчики линейных перемещений могут быть применены и для определения параметров вращательного движения - угловой скорости и углового ускорения. Наряду с этим в системах инерциальной навигации находят широкое применение разнообразные гироскопические измерительные приборы, чувствительным элементом которых является быстро вращающаяся масса - гироскоп. Действие гироскопических приборов основано на использовании инерционных свойств вращающегося тела, проявляющихся в закономерностях его прецессионно-нутационного движения.  [c.163]


Пластичные смазки, используемые в точном приборостроении, приведены в табл. 2.10. Наиболее распространенной приборной смазкой, рекомендуемой для электромеханических устройств приборов (радиоэлектронных, навигационных, счетно-решающих, систем автоматического управления), является смазка типа ОКБ-122-7 или ее модификация ОКБ-122-7-5 [112]. Тем не менее многие опоры приборов, микроэлектродвигателей, зубчатые передачи работают в таких условиях, где применение указанной приборной смазки нецелесообразно. Так, для гироскопических ириборов, работающих при больших частотах вращения подшипников, имеющих малые габаритные размеры, рекомендуются смазки типа ВНИИ НП-233, ВНИИ НП-228, ВНИИ НП-260, обладающие хорошими иротивоизносными свойствами и обеспечивающие безотказную работу гироскопа без смены и пополнения СМ в течение многих лет. Для уменьшения потерь на трение гироскопические двигатели эксплуатируются в вакууме или среде инертного газа  [c.57]

Прибор представляет собой конструктивную комбинацию гироскопической системы с обычной магнитной системой. Взаимодействие этих двух систем выражается в том, что магнитная стрелка устанавливается в плоскости меридиана и удерживает ось гироскопа в указанной полоскости, а гироскоп уничтожает все недостатки, свойственные магнитной стрелке, при применении ее в полете.  [c.159]


Смотреть страницы где упоминается термин Гироскопические приборы Гироскоп и его применение : [c.260]   
Смотреть главы в:

Проектирование механизмов и приборов  -> Гироскопические приборы Гироскоп и его применение



ПОИСК



Гироскоп

Гироскоп применения

Гироскопический

Приборы гироскопические



© 2025 Mash-xxl.info Реклама на сайте