Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения процесса истечения

ОСНОВНЫЕ УРАВНЕНИЯ ПРОЦЕССА ИСТЕЧЕНИЯ  [c.97]

Скорость истечения газа при адиабатном процессе определяется из основного уравнения располагаемой работы  [c.202]

На развитие по времени самого процесса смесеобразования влияют следующие факторы сжимаемость топлива, упругость системы трубопроводов и корпуса форсунки, возникающие волны давления в нагнетательном трубопроводе, а также дросселирование при истечении из сопла. Согласно основному уравнению гидравлики для несжимаемой жидкости ниже  [c.238]


Адиабатный процесс истечения газа включает в себя понятие о располагаемой работе, поэтому предварительно рассмотрим эту работу. В параграфе 12. 1 отмечалось, что в основе теории газового потока лежит первое начало термодинамики. Как известно, основное уравнение первого закона термодинамики (4. 5) или (4. 6) выражает равенство энергий для процессов, в которых тело не имело видимого движения в пространстве и, следовательно, не обладало кинетической энергией. Для процессов, в которых тело перемещается в пространстве с некоторой переменной скоростью хю, а следовательно, обладает кинетической энергией видимого движения, уравнение  [c.241]

При опорожнении трубопровода в повышенных точках возникает вакуум, величина которого не должна быть более установленного предела. Вследствие этого процесс истечения жидкости через выпуск рассматривается совместно с процессом поступления воздуха в трубопровод. Уравнение, связывающее основные параметры при опорожнении прямого участка водовода (рис. 5.17) в зависимости от высоты Н до Яг, имеет вид  [c.137]

Уравнение (9-4) я вляется основным для потока газа или пара, причем оно имеет силу и для обратимых, и для необратимых процессов истечения. Его можно формулировать так в общем случае теплота, сообщаемая телу при истечении, расходуется в двух направлениях, а именно часть идет на приращение энтальпии тела, а остальная— на приращение внешней кинетической энергии, т. е. нп увеличение скорости потока.  [c.198]

Сложность исходной системы дифференциальных зфавнений Навье-Стокса, описывающих указанный процесс, не позволяет получить аналитическое решение поставленной задачи. В этой связи основным методом исследования процесса истечения жидкости из подпорных емкостей при наличии воронок является экспериментальный. Вместе с тем, значительный практический интерес представляют приближенные решения системы дифференциальных уравнений Навье-Стокса для отдельных частных случаев истечения жидкости через отверстия в стенке сосуда, позволяющие обоснованно подойти к постановке экспериментальных исследований, обработке результатов измерений и установлению математической связи между параметрами, определяющими исследуемый процесс.  [c.355]

В первой части учебного пособия кратко изложены исторические данные, показана роль, которую играли русские и советские ученые в развитии основных положений теоретической теплотехники. Подробно рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечение газов и паров. В прикладной части рассмотрены циклы двигателей внутреннего сгорания, газотурбинных и паротурбинных установок, а также циклы атомных электростанций,  [c.3]


Величина коэффициента эжекции п является одной из основных характеристик рабочего процесса в эжекторе, от п зависит величина 3, если газы или жидкости на входе разные. Соотношения (9.22) — (9.26) одинаковы как для жидкостей, так и для газов. Если некоторые из характеристик потока (например, при дозвуковом истечении — давление) заданы на выходе из диффузора, то выписанная система уравнений должна быть дополнена соотношениями, характеризуюш,ими движение жидкости или газа в диффузоре (на практике с учетом данных о потерях в диффузоре). В четырех соотношениях (9.22) — (9.25), содержащих 12 параметров р , г , 5,-, специфика жидкостей  [c.116]

Характерной чертой Б. С. Стечкина было вместе с изложением основного вопроса подробным образом касаться приложений, взятых непосредственно из практики конструирования или эксплуатации авиамоторов. В результате после рассмотрения исходной системы уравнений, что всегда выглядит при чтении лекций формально отвлеченно, студент получал готовый сборник практических задач с ответами и рекомендациями. Число таких задач на лекциях Стечкина достигало полутора десятка. Здесь же впервые ставятся задачи, решением которых ученые и инженеры будут заниматься в прямом смысле до скончания века. Это — регулирование процессов горения и полноты сгорания топлива, форсирование тяги двигателя, устойчивость процессов горения и истечения (помпаж), вопросы экономичности и надежности, наддува и дожигания продуктов сгорания. Стечкиным был накоплен огромный научно-практический опыт, основанный на участии в работах отечественного моторостроения, поэтому чтение лекций сопровождалось примерами расчетов и необходимыми для расчетов практическими рекомендациями по значениям поправочных коэффициентов, по величинам ожидаемых потерь мощности и тяги, по возможным значениям к.п.д. и т. п., то есть, лекции несли своим слушателям материал, который мог быть использован в реальном проектировании. Рассматривая три типа ВРД — прямоточный, турбокомпрессорный и пульсирующий. Стечкин останавливается на целом ряде изобретений и приложений по усовершенствованию параметров того или иного типа ВРД, вспоминает  [c.184]

Процессы обратимые и необратимые. Уравнение состояния идеальных газов ри = ЯТ связывает между собой три основные величины удельное давление, удельный объем и температуру, характерные для состояния газа в предположении его однородности, состоящей в том, что эти величины, будучи в общем случае переменными по времени, в каждый момент ло всему объему, занимаемому газом, одинаковы. Такое состояние тела называется равновесным, потому что без внешнего воздействия тело из него не выходит если же давление и температура в разных местах тела неодинаковы и тело будет представлено самому себе, т. е. изолировано от всякого внешнего влияния, то по истечении некоторого времени произойдет выравнивание как температуры, так и давления. Одинаковость давления обусловливает механическое равновесие, а одинаковость температуры — термическое равновесие, так что можно сказать, что уравнение состояния газа справедливо для равновесных состояний, т. е. для газа в условиях механического и термического равновесия.  [c.50]

Прежде всего следует констатировать, что нестационарные явления в лазере могут возникать без дополнительного вмешательства. При вычислении мощности излучения по уравнению (2.15) мы с самого начала пренебрегали всеми производными по времени. Естественно, однако, что это возможно только после того, как пройдет некоторое время с момента включения излучения накачки, так как при отбрасывании производных не учитываются процессы установления в лазерной среде до достижения некоторого стационарного состояния. Если же в основных уравнениях сохранить производные по времени, то можно показать, что процессы включения в случае одной моды нельзя описать как монотонно протекающие с течением времени. Они носят характер затухающих со временем негармонических колебаний поля излучения и инверсии населенностей, которые в конце концов по истечении некоторого времени стремятся к стационарному состоянию. Эти затухающие колебания называют релаксационными колебаниями лазера в одномодовом режиме. При рассмотрении многомодового режима ситуация еще более усложняется. В результате пространственной и временндй интерференции мод, нерегулярного срыва и возникновения осцилляций выходное излучение лазера приобретает форму нерегулярных во времени импульсов со стохастически флуктуирующей амплитудой. Существенно, что при этом излучение, вообще говоря, не переходит в стационарный режим и продолжает носить нестационарный характер по истечении длительного времени.  [c.89]


Визуальные наблюдения и кинофотосъемка процесса истечения вра-щаюш ейся жидкости позволили выявить ряд специфических особенностей перемещения потока в емкости. Установлено, что жидкость, поступающая в емкость при своем перемещении к сливному отверстию, приобретает вращательное движение и отжимается к боковой поверхности резервуара. Вблизи стенок емкости наблюдаются восходящие потоки, которые смыкаются на свободной поверхности жидкости. Основная масса жидкости движется вдоль свободной поверхности к сливному отверстию. Более 90% общего расхода жидкости через сливное отверстие формируется за счет отбора с поверхностного слоя. Отсюда следует, что величина расхода жидкости определяется в основном параметрами вихревой воронки. Эта особенность истечения вращающейся жидкости через донное отверстие учитывается параметрами и Квц, входящими в критериальное уравнение (9.83).  [c.371]

Предполагается, что струя жидкости со среднерасходовой скоростью и начальной температурой 7(, и заданным при л = 0 распределением скорости по сечению круглого отверстия радиусом / (, вытекает в пространство, заполненное насыщенным паром той же жидкости с температурой насыщения (7 ) радиальная составляющая градиента температуры много больше осевой. При не слишком низких давлениях процесс конденсации определяется в основном процессами переноса тепла в струе. Это позволяет описать данный процесс уравнениями количества движения в постановке Прандтля и энергии при турбулентном истечении струи  [c.70]

Из этих уравнений видно, что трение приводит к уменьшению располагаемой работы, идущей на увеличение кинетической энергии. При этом на такую же величину снижается и приращение энтальпии, так что соблюдается равенство йк ——тйш), которое представляет собой уравнение (7.28), в котором трение учтено. Остается справедливой и основная расчетная формула (7.36). Процесс необратимого истечения (расширения) рассмотрен в 24. Здесь отметим лишь, что действительная скорость истечения Шд ниже скорости истечения, определяемой по формуле (7.36), и это снижение учитывается скоростным коэффициентом т — Шц1ш = = 0,95—0,98.  [c.183]

Рассматривается стационарное решение, которое по предположению действительно устанавливается по истечении достаточно большого промежутка времени, когда переходные процессы, соответствующие страгиванию трещины, исчезают. Как было установлено в п. 2.2, разрешающие уравнения для поля деформаций внутри зоны активной пластичности приводятся к системе двух квазилинейных уравнений в частных производных. Точное решение этих уравнений на линии движения трещины в зоне активной пластической деформации было построено методом преобразования годографа Фрёндом и Дугласом [48], методом асимптотических разложений — Ахенбахом и Дунаевским [32]. Ниже для получения основных результатов применяется комбинация этих способов.  [c.106]

Разделом Тепловые и холодильные машины заканчивается первая часть учебника. Во второй его части сначала дается общая теория водяного пара, приводятся основные соотношения для него (Реньо и Цейнера), а затем проводится исследование процессов изменения состояния пара. Адиабатный процесс исследуется двумя методами. В первом случае за основу исследования этого процесса принимается уравнение S2 = Si, во втором случае — уравнение pu = = onst. При рассмотрении адиабатного расширения насыщенного пара определяется то начальное значение степени сухости пара х при заданных условиях, при котором не происходит ни подсушки, ни увлажнения пара, т. е. при котором значение х при расширении пара сохраняется постоянным. Дальше рассматривается процесс смешения паров. Здесь определяются конечные параметры образовавшегося пара. Вслед за процессом смешения паров приводится теория истеченил насыщенного пара. При этом основным вопросом является вывод формулы скорости истечения пара. Вывод этой формулы отличается от обычно принятого метода, основанного на использовании уравнения адиабаты = onst. За исходное соотношение при выводе этой формулы принимается уравнение  [c.79]

Оригинальный метод обоснования уравнения второго зако а термодинамики, стличавшийся от метода Клаузиуса. Учебник Окатова, 1871 г. Регенеративны цикл и его теория. Теория истечения газа и пара с выводом формул скорости истечения, секундного расхода, критического отношения давлений, критической скорости и максимального расхода. Учебник Вышнеградского, 1871 г. Политропный процесс. О двигателях внутреннего сгорания и холодильных установках. Учебник Орлова, 1891 г. Здесь в основном говорилось о зависимости теилосмкости газа от температуры и давления. О критическом состоянии вещества, критических параметрах и экспери-ментальпо.м определении критической те.мпературы. Аналитические соотношения, определяющие условия критической точки на критической изотерме. Уравнение Ван-дер-Ваальса и его анализ. Критическое замечание о положении Клаузиуса Энтропия Вселенной стремится к максимуму . Диаграмма Т — 5 и приложение ее при исследовании процессов и циклов. Никлы двигателей Отто и Дизеля и вывод формулы их термического к. п. д. Вывод формулы термического  [c.210]

Пятое издание учебника Сушкова имело следующее содержание (по главам) введение газы основные газовые законы первый закон термодинамики теплоемкость газа газовые процессы второй закон термодинамики дифференциальные уравнения термодинамики циклы поршневых двигателей внутреннего сгорания воздушный компрессор истечение газов циклы газовых турбин и реактивных двигателей водяной пар паровые процессы циклы паросиловых установок циклы холодильных установок влажный воздух приложения.  [c.341]


В первой части книги рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечения газов и паров. Кроме того, да ю изложение циклов двигателей внутреннего сгорания, газотурбинных, паротурбинных установок и атомных электростанций. Вторая часть посвящена изложению законов теплопроводности при стационарном и нестационарном режимах, теории подобия, конвективного теплообм иа и излучения. В каждой главе помешены числовые примеры. В да1том издании (второе вышло в 197.5 г.) улучнюна редакция, уточнены терминология, формулировки, приведены новые данные.  [c.248]


Смотреть главы в:

Термодинамика и теплопередача  -> Основные уравнения процесса истечения



ПОИСК



Истечение

Основные процессы

Основные уравнения истечения

Процесс Уравнение

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте