Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения стационарного движения стержня

Частные случаи уравнений стационарного движения стержня.  [c.46]

Рассмотрим несколько частных случаев общих уравнений стационарного движения стержня, имеющих прикладное значение. Во введении к этой главе приведен пример, где используется быстродвижущийся гибкий стержень для охлаждения реактора  [c.107]

В данной главе дается подробный вывод уравнений движ ения, которые в дальнейшем используются во всех главах. Вывод уравнений проводится в векторной форме, позволяющей получать уравнения в наиболее компактном и удобном при преобразованиях виде. Вначале выводятся общие нелинейные уравнения движения, а далее рассматриваются их частные случаи, в том числе и предельный частный случай — стационарное движение стержня.  [c.24]


Уравнения малых колебаний прямолинейного стержня, имеющего продольное движение. Общие нелинейные уравнения движения пространственно-криволинейного стержня (см. рис. 2.4), имеющего принудительную угловую скорость вращения 0)0 и принудительную скорость продольного движения ууо, были получены в 2.1. Уравнения, характеризующие стационарный режим движения, когда форма осевой линии стержня остается в пространстве неизменной, получены в 2.4. Уравнения малых колебаний стержня относит,ельно стационарного движения были получены в 3.4. Уравнения, полученные в 3.4, описывают малые колебания стержня относительно стационарного движения, когда осевая линия стержня есть пространственная кривая. Можно уравнения малых колебаний стержня относительно прямолинейного движения, например ветвь передачи с гибкой связью (см. рис. В.5), получить из этих общих уравнений. Но для выяснения основных особенностей подобных задач целесообразно для частного случая колебаний прямолинейного стержня еще раз повторить вывод уравнений малых колебаний относительно прямолинейного стационарного движения стержня.  [c.191]

Уравнение для перемещений остается без изменения, так как при установившемся движении форма стержня может быть определена как форма неподвижной трубки, с которой совпадает стержень. Для гибких тонких стержней распределенный момент, вызванный инерцией вращения, как правило, является малым, и им можно пренебречь (J 0). Если слагаемое, зависящее от скорости продольного движения, объединить с осевой силой [как это сделано в (5.6)], то уравнения, характеризующие стационарное движение стержня, эквивалентны уравнениям равновесия. Сила Q, входящая в уравнение моментов, может быть заменена на Q< так как справедливо равенство  [c.107]

Ограничимся в дальнейшем только механической частью расчета ленточного радиатора и получим уравнения равновесия ленты для режимов работы в космосе и в земных условиях. Уравнения стационарного движения ленты получим в системе координат уох, вращаюш,ейся с угловой скоростью цилиндров / и 2 (рис. 5.11), прижимающих ленту к барабану. В относительной системе координат лента имеет продольное движение со скоростью w = кроме того, на ленту действует распределенная нагрузка mmV. Воспользуемся уравнением равновесия стержня (5.6), которое запишем во вращающейся системе координат уох. Полагая  [c.109]


Уравнения колебаний стержня в плоскости. При стационарном движении стержня в плоскости чертежа (рис. 8.11) возможны его колебания в ней и относительно плоскости. Рассмотрим малые свободные колебания стержня, движущегося в плоскости с постоянной скоростью W. Из уравнений (8.143)—(8.151) получаем (Oi = 1, Л33 == 1)  [c.201]

Рассмотрим еще систему двух точек Mi и М2 (рис. 355), соединенных жестким стержнем длины Одна из точек, например Ми может иметь совершенно произвольное бесконечно малое перемещение, направленное как угодно в пространстве. Вторая может при этом иметь только такое перемещение, проекция которого на направление стержня равна проекции перемещения первой точки на то же направление ( 55). Аналитически в общем случае пространственного движения это условие может быть получено дифференцированием уравнения стационарной связи  [c.311]

Уравнения малых колебаний стержня, имеющего при стационарном движении плоскую форму. Эти уравнения можно получить как частный случай уравнений (3.84), (3.89) при хю=Х2о=0,  [c.70]

В 3.4 были получены уравнения малых колебаний стержня относительно стационарного движения, которые содержали (в уравнении поступательного движения элемента стержня) силы инерции Кориолиса, равные дЧ/ дгд%), также зависящие от первой производной по времени. При наличии сил сопротивления свободные колебания должны быть затухающими, поэтому А, должны быть комплексными числами вида  [c.98]

Если рассматриваются вынужденные колебания стержня относительно стационарного движения, то в уравнении появится слагаемое, зависящее от сил Кориолиса,  [c.128]

Так как при стационарном движении все величины, характеризующие состояние стержня, не зависят от времени, то вместо частных производных можно использовать полные производные по s, поэтому получаем следующее уравнение равновесия  [c.106]

Уравнения малых колебаний стержня, имеющего при стационарном движении плоскую форму. Уравнения малых колебаний стержня для этого случая можно получить из общих уравнений (8.137)—(8.142), положив Хц, = х о = Q30 = =  [c.200]

Очень часто в реальных задачах большой практический интерес представляет переходный режим колебаний от момента приложения нагрузки до выхода системы на установившийся режим (стационарный режим, если он возможен) или до определенного момента времени. Например, если на стержень действует внезапно приложенная случайная по направлению и модулю сила и требуется выяснить, как будет двигаться стержень после ее приложения, то считать движение (колебания) стержня стационарными нельзя даже в том случае, если сила является стационарной случайной функцией. В общем случае случайные силы, действующие на стержень, могут быть любыми, в том числе и нестационарными, случайными функциями, у которых вероятностные характеристики зависят от времени. В этом случае вероятностные характеристики решений уравнений колебаний стержня (в том числе и уравнений с постоянными коэффициентами) также зависят от времени, т. е. являются нестационарными. Это существенно осложняет решение, так как воспользоваться спектральной теорией нельзя.  [c.158]

В общем случае при исследовании действия подвижной нагрузки на упругую систему необходимо учитывать массу как нагрузки, так и самой упругой системы. Однако в случае стационарного режима движения груза по бесконечной балке, лежащей на сплошном упругом основании, когда прогиб под грузом остается постоянным (рис. 7.22), масса груза роли не играет (так как нет ускорения по оси Хз). Уравнение вынужденных изгибных колебаний стержня постоянного сечения, лежащего на упругом основании, без учета сил сопротивления, инерции  [c.212]

Уравнения равновесия нити, имеющей продольное движение, являются частным случаем уравнений, полученных в 22 для стационарно движущегося гибкого стержня. В векторной форме записи уравнение равновесия аналогично уравнению (5.6)  [c.114]

Уравнения стационарного движения стержня, имеющего вращение относительно осевой линии (см. рис. 2.3). В данном случае точка В на рис. 2.3 неподвижна. Из уравнения (2.44) при 1ц= = сопз(, у1 =аУо=сопз( получаем  [c.51]


Векторные уравнения в связанной системе координат. При стационарном режиме движения стержня у = Iи о I =соп51, а)о = 0. В 2.4 были получены уравнения стационарного движения стержня. Получим теперь уравнения малых колебаний стержня относительно стационарного движения. Из уравнений (3.73), (3.74) имеем  [c.68]

Рассмотрим частный случай стационарного двилсения — плоское движение стержня. В начале данного параграфа был приведен пример ленточного радиатора (см. рис. 2.10). Уравнения стационарного движения ленты получим в системе координат Х Ох2, вращающейся с угловой скоростью шоо вращения цилиндров (см. рис. 2.10), прижимающих ленту к барабану. В относительной системе координат лента имеет продольное движение  [c.48]

Вынужденные колебания относительно стационарного движения. Уравнение малых колебаний относительно прямолинейного стационарного движения стержня (рис. 7.20) имеет следующий вид [частный случай уравнения (7.105) при Qi=Qio= onst]  [c.210]

Стержень, непрерывно движущийся со скоростью w (точнее, отрезок бесконечного стержня постоянной длины), показан на рис. 5.8. В установившемся режиме движения пространственная форма стержня остается неизменной. Такой режим движения принято называть стационарным двиокением. Основная особенность стационарного режима движения заключается в том, что для внешнего наблюдателя стержень в целом (по отношению к покоящейся сийтеме координат) сохраняет свое положение в пространстве, несмотря на имеющуюся скорость продольного движения — движения, когда вектор абсолютной скорости всегда направлен по касательной к осевой линии стержня. Иногда такое состояние равновесия называют кажущимся покоем стержня. Понятие стационарного движения справедливо и в относительной системе координат, например во вращающейся (см. рис. 5.4). В дальнейшем будем представлять стержень, находящийся в абсолютно гибкой безынерционной трубке, имеющей ту же длину (рис. 5.9, а). Рассмотрим элемент стержня (рис. 5.9, б), совпадающий в данный момент с элементом трубки. В отличие от уравнения равновесия, полученного в гл. 3, в данном случае на стержень действует распределенная нагрузка  [c.105]

Следует отметить, что стационарные решения (при стационарных случайных нагрузках) возможны только для стержней, движение которых описывается дифференциальными уравнениями с коэффициентами, не зависящими от времени. Для уравнения (6.7) стационарное решение возможно при а1=соп51, a2= onst.  [c.147]

В качестве второго примера рассмотрим явление динамической неустойчивости движения прямолинейного стержня,, находящегося под действио продольных периодических сил. Согласно линейной теории этого явления в областях неустойчивости должны. наблюдаться колебания с неограниченно нарастающими а мпли-тудами. Вместе с тем эксперимент показывает, что в этих областях реализуются стационарные колебательные режимы с большими, но конечными амплитудами, Объяснить это, явление линейным затуханием совершенно невозможно, так как фактор линейного. затухания приводит к сужению областей неустойчивости, но внутри них по-п/режнему остаются неограниченно нарастающие амплитуды. Только сохранение нелинейных членов в уравнениях этой задачи дает возможность объяснить возникновение стационарных колебателБных. режимов в областях неустойчивости.  [c.23]

Изучается качение жёсткого колеса по деформируемому упругому рельсу, лежащему на вязкоупругом основании. Ранее [20, 115] при составлении модели системы использовалась приближённая теория Бернулли-Эйлера. Здесь применяется уточнённая теория изгиба стержней (С. П. Тимошенко). С помощью принципа Гамильтона-Остроградского составлены уравнения движения. Показано, что связи, описывающие условия контакта, создают реакции в виде силы и пары. Дана оценка величины псевдоскольжения, обусловленного поперечными (в отличие от классического крипа) деформациями. Найдены две характерные скорости стационарного качения колеса, разделяющие области качественно различного движения рельса.  [c.146]


Смотреть страницы где упоминается термин Уравнения стационарного движения стержня : [c.50]    [c.44]   
Смотреть главы в:

Механика стержней. Т.2  -> Уравнения стационарного движения стержня



ПОИСК



Движение стационарное

Движение стержня

Уравнения движения стержня

Уравнения движения стержня движение

Уравнения стационарного движения



© 2025 Mash-xxl.info Реклама на сайте