Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория напряженного состояния и гипотезы прочности

ТЕОРИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ И ГИПОТЕЗЫ ПРОЧНОСТИ 67. Что такое напряженное состояние в точке и как оно количественно оценивается  [c.46]

Теория напряженного состояния и гипотезы прочности > Геометрические характеристики плоских сечений  [c.1]

ТЕОРИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ И ГИПОТЕЗЫ ПРОЧНОСТИ  [c.17]

Надо заметить, что ранее в программе вопросы напряженного состояния были даны отдельной темой, изучавшейся непосредственно после темы Растяжение и сжатие . Конечно, более тесное объединение вопросов напряженного состояния с гипотезами прочности вполне логично и целесообразно. Во-первых, учащиеся к моменту изучения гипотез прочности уже лучше чувствуют идеи и методы предмета, их уровень развития становится выше, они могут лучше понять и усвоить сравнительно сложный материал о напряженном состоянии. Во-вторых, излагая гипотезы прочности после того, как основы теории напряженного состояния были изучены, неизбежно приходится вновь повторять основные сведения и понятия о напряженном состоянии, что приводит к непроизводительной затрате времени и, несомненно, ухудшает восприятие нового материала о гипотезах прочности. В-третьих, при такой системе изложения получается постепенное наслоение знаний о напряженном состоянии в самом начале учащемуся говорят о том, что напряжение зависит от положения площадки действия, затем его знакомят с напряженным состоянием при растяжении (сжатии), потом он изучает чистый сдвиг, наконец, непосредственно перед гипотезами прочности он получает достаточно полные и систематизированные сведения о напряженном состоянии.  [c.150]


Для проверки прочности материала при плоском и объемном напряженных состояниях используются гипотезы (теории) прочности. Каждая гипотеза прочности высказывает свое предположение о том, какой фактор вызывает появление опасного (предельного) состояния. В зависимости от принятой гипотезы определяют эквивалентное напряжение и сравнивают его с допус-  [c.20]

Назначение и физическая сущность гипотез прочности. Выскажем некоторые соображения о терминологии. До сравнительно недавнего времени (а во многих книгах и по сей день) принято наименование теория прочности , недостаточно хорошо отражающее существо вопроса. Наиболее четко сущность понятия отражена в наименовании теория предельных напряженных состояний (гипотезы возникновения текучести и гипотезы прочности) , принятом в монографии [26] и в учебнике [36]. Несмотря на то что это наименование удачно по смыслу, оно неудобно (слишком многословно) и поэтому предложено пользоваться более кратким — гипотезы прочности . Этот термин вошел в программы по технической механике и в учебную литературу для техникумов.  [c.159]

Для оценки статической прочности при сложном напряженном состоянии используют критерии прочности или разрушения, зависящие от напряженного и деформированного состояния, а также механических свойств материала. Эти критерии по" зволяют перенести результаты опытов по разрушению образцов при простых напряженных состояниях на случай сложных напряженных состояний. В курсах сопротивления материалов их называют теориями или гипотезами прочности.  [c.589]

Так как в данном случае имеет место плоское напряженное состояние, то для расчета на прочность необходимо применить ту или иную теорию прочности. Главные напряжения имеют следующие значения а, —а 03 = 0 Оз=0. По третьей гипотезе прочности 0 —Подставляя 0( = а и 03 =0, получаем  [c.261]

Гипотезы о критериях возникновения текучести и о критериях разрушения называются теориями прочности или теориями предельного напряженного состояния.  [c.92]

При сложном напряженном состоянии определение условий (критериев) прочности с помощью величин предела текучести и предела прочности, полученных при экспериментах для одноосного напряженного состояния, можно получить с помощью гипотез о преимущественном влиянии на прочность материала того или иного фактора, например наибольшего нормального напряжения или наибольшего касательного напряжения. Эти гипотезы носят название теорий прочности.  [c.14]


Для изотропных тел название теория прочности объединяет различные критериальные гипотезы предельных состояний. Каждая гипотеза формулирует условие перехода из одного механического состояния в другое. Экспериментально определяются исходные параметры — предельные напряжения при некоторых основных видах напряженных состояний (обычно при простом растяжении и сжатии). Теория предельных состояний позволяет предсказать условие перехода материала из одного механи-  [c.138]

Согласно этой теории, наиболее существенное влияние на прочность и наступление предельного состояния оказывает величина наибольшего главного напряжения. В соответствии с этой гипотезой предельное состояние и разрушение материала не  [c.100]

На деле всякая попытка реализовать эту программу встречается с весьма серьезными препятствиями. Так, при осевом растяжении достаточно длинного цилиндрического или призматического образца напряженное состояние не слишком близко от концов образца можно считать (макроскопически) однородным. Но уже в случае сжатия вопрос сильно усложняется. Дело в том, что испытывать на сжатие длинные образцы трудно из-за их склонности к выпучиванию, а при сжатии коротких призм или цилиндров влияние способа приложения нагрузки сказывается, в сущности, по всему образцу (даже при испытаниях со смазкой торцов и другими предосторожностями). За немногими исключениями затруднения такого рода возрастают с переходом к опытам при сложном напряженном состоянии, а нри изучении объемных напряженных состояний становятся часто непреодолимыми — достаточно чисто осуществить в опытах объемное напряженное состояние любого наперед заданного вида до сих пор не удается. В результате вместо конкретизации соотношений (4.18), (4.19) на основе экспериментальных данных приходится выбирать промежуточный путь, когда вид функции, входящей в эти соотношения, частью устанавливается с помощью теоретических соображений и гипотез, а частью — с по/ мощью экспериментальных данных. В роли первых часто используются разного рода обобщения классических теорий прочности, изложенных в предыдущем параграфе.  [c.129]

Первая теория прочности, или теория наибольших нормальных напряжений, представляет собой гипотезу о том, что опасное состояние материала наступает, когда какое-либо из главных напряжений достигает опасного значения. В соответствии с этим при расчетах на прочность ограничивается величина наибольших главных напряжений, которая не должна превышать допускаемого нормального напряжения [а], устанавливаемого из опыта на одноосное растяжение и сжатие.  [c.402]

Следовательно, располагая ограниченными экспериментальными данными о свойствах определенного материала — значениями предельных напряжений при одноосном растяжении и сжатии, — необходимо иметь возможность оценить его нрочность в условиях любого сложного напряженного состояния. Это становится возможным при применении так называемых гипотез прочности (теории предельных напряженных состояний).  [c.368]

При сложном напряженном состоянии действуют несколько компонент напряжений (от двух до шести), и необходимо учесть влияние каждой из них. Здесь приходится использовать теории (гипотезы) прочности, назначение которых состоит в том, чтобы заданному напряженному состоянию поставить в соответствие неко-  [c.106]

Справедливость той или иной гипотезы можно подтвердить только путем сопоставления результатов расчета с экспериментально известными фактами. Надежных экспериментальных данных при сложном напряженном состоянии пока недостаточно, поэтому здесь мы рассмотрим лишь некоторые общие положения, относящиеся к теориям прочности, и сформулируем основные требования к ним. О степени пригодности той или иной теории можно в-какой-то мере судить по их соответствию этим требованиям.  [c.87]

Из приведенного обзора видно, что точность решений, основанных на статистических подходах, зависит от того, насколько принятая модель отражает свойства реального тела и учитывает особенности кинетики его разрушения. В основу большинства современных статистических теорий положена гипотеза о том, что независимо от вида напряженного состояния, в котором находятся элементы тела, ответственными за разрушение являются максимальные нормальные напряжения, а прочность всего тела определяется локальной прочностью. Усложнение модели, как правило, приводит к непреодолимым математическим трудностям или решениям, непригодным для практического применения ввиду их громоздкости, или к необходимости опытного определения большого числа констант материала.  [c.133]


В этих точках возникает плоское напряженное состояние, при этом главные напряжения (Т1 = а Оа = О и (Тз = а . Условие прочности для охватывающей детали из пластичного материала по гипотезе наибольших касательных напряжений (третьей теории прочности)  [c.81]

Каждая теория прочности на основании принятой гипотезы устанавливает, какое состояние при сложном напряжении соответствует появлению опасных напряжений при простом одноосном растяжении или сжатии. Такие состояния называются эквивалентными или равноопасными напряженными состояниями. После установления математических форм указанного соответствия удается определить для любого сложного напряженного состояния характеристику, зависящую от величин главных напряжений, которая эквивалентна максимальному напряжению при осевом растяжении или сжатии. Эта характеристика называется эквивалентным напряжением и обозначается  [c.254]

Ползучесть и длительная прочность при сложном на> пряженном СОСТОЯНИИ. Как мы видели, ползучесть есть одно из проявлений пластичности механизм ползучести, по существу, не отличается ОТ механизма обычной пластической деформации, поэтому при формулировке законов ползучести в сложном напряженном состоянии мы будем пользоваться теми же идеями и теми же гипотезами, ЧТО и для пластичности. Так же, как н для пластичности, существуют различные теории ползучести, которые дают в общем близкие результаты. Та теория, которая будет изложена ниже, является распространением теории пластического течения Сен-Венана с ассоциированным законом распределения скоростей. Согласно теории Сен-Венана пластическое состояние осуществляется тогда, когда наибольшее касательное напряжение достигает предельного значения, ЭТО значение сохраняется в процессе пластической деформации постоянным, сама пластическая деформация представляет собою чистый сдвиг. Таким образом, если принять, как обычно, Oi a, o то  [c.448]

В механике деформируемого твердого тела при сравнительно большой точности определения напряженно-деформированного состояния в конструкциях степень точности определения момента разрушения остается низкой. Это несоответствие в первую очередь объясняется тем, что гипотеза сплошности, которая кладется в основу задач определения напряжений и деформаций, дает возможность определить лишь осредненные значения напряжений, не учитывая реально существующей микроструктуры, которая существенно влияет на характеристики прочности и разрушения. Многообразие возможных и реально существуюш,их микроструктур не дает возможности построить единую теорию разрушения, которая могла бы учитывать влияние строения материалов на его прочность с той же степенью точности, как определяются напряжения и деформации на базе гипотезы сплошности, игнорирующей микроструктуру материалов. Описанные в 8.10 критерии кратковременной прочности базируются на представлении о разрушении как о мгновенном акте.  [c.181]

В первом разделе рассмотрены эпюры внутренних силовых факторов и растяжение-сжатие пряиолинейного стержня, во -втором - теория напряженного состояния, включая гипотезы прочности, кручение круглых ваюв. геометрические характеристики поперечных сечений в третьем - плоский прямой изгиб в четвертом -статически неопределимые системы и сложное сопротивление в пятом - устойчивость деформируемых систем, динамическое нагру-Ж ение, тонкостенные сосуды в шестом - плоские кривые стержни, толстостенные трубы и переменные напряжения.  [c.39]

Гипотезы, указывающие признаки равноопасности (критерии эквивалентности) различных напряженных состояний, называют гипотезами прочности. Другие наименования теория предельных напряженных состояний (гипотезы возникновения текучести и гипотезы прочности) гипотезы пластичности и хрупкого разрушения теории прочности.  [c.369]

В учебной литературе в основном применяется термин теории прочности в специальной научо-технической литературе применяют термины теории предельных напряженных состояний или гипотезы возникновения текучести и гипотезы хрупкого разрущения .  [c.207]

Для проверки прочности материала при плоском и объемном напряженных состояниях используются гипотезы (теории) прочности. Каждая гипотеза прочности высказывает свое предположение о том, какой фактор вызывает появление опасного (предельного) состояния. В зависимости от принятой гипотезы определяют эквивалентное напряжение Оэка и сравнивают его с допускаемым напряжением / стJp на растяжение, т.е. условие прочности записывается следующим образом  [c.25]

Для установления равноопасности сложного напряженного состояния и одноосного растяжения напряжением сГэ в используют различные гипотезы и теории прочности.  [c.153]

Созданию теории предельных состояний (теории прочности) предшествует гиполеза о том, какое из напряжений или какая их комбинация и сложном напряженном состоянии определяет переход к предельному состоянию. Вырабатывается, как говорят, критерий предельного состояния. В дальнейшем гипотеза подвергается проверке  [c.262]

Основная, пожалуй, задача, на которой были сосредоточены в последние годы усилия ученых-механиков, занимающихся практическими приложениями механики разрушения к оценке прочности крупногабаритных изделий,— это задача о нахождении условий равновесия или распространения большой трещины в достаточно пластичном материале. Пластическая зона впереди трещины велика настолько, что для нее можно считать справедливыми соотношения макроскопической теории пластичности, рассматривающей среду как сплошную и однородную. Для плоского напряженного состояния модель Леонова — Панасюка — Дагдейла, заменяющая пластическую зону отрезком, продолжающим трещину и не имеющим толщины, оказывается удовлетворительной. В частности, это подтверждается приводимым в этой книге анализом соответствующей упругопластической задачи, которая ре- шается численно методом конечных элементов. С увеличением числа эле-ментов пластическая зона суживается и можно предполагать, что в пределе, когда при безграничном увеличении числа элементов решение стремится к точному решению, пластическая зона действительно вырождается в отрезок. Заметим, что при рассмотрении субмикроскопических трещин на атомном уровне многие авторы принимают гипотезу о том, что нелинейность взаимодействия между атомами существенна лишь в пределах одного межатомного слоя, по аналогии с тем, как рассчитывается так называемая дислокация Пайерлса. Онять-таки, как и в линейной теории, возникает формальная аналогия, но здесь она носит уже искусственный характер, и суждения об относительной приемлемости модели в разных случаях основываются на совершенно различных соображениях степень убедительности приводимой Б защиту ее аргументации оказывается далеко неодинаковой.  [c.10]


Возможность иопользования эпергетической теории прочности для пересчета результатов испытаний, проведенных при различных видах напряженного состояния, впервые показана В. Н. Кузнецовым. Сравнивали результаты исследований стали 12Х18Н9Т при двух- и одноосном растяжении-сжатии. Несмотря на то, что опыты были проведены в несколько различающихся условиях, соответствующие кривые 2 и <3 (рис. 83,а) расположены в узкой полосе разброса. Впоследствии вывод о справедливости энергетической гипотезы прочности был подтвержден результатами испытания трех марок сталей при совместном действии осевой и сдвигающей нагрузок (Н. Д. Соболев, В. И. Егоров) — рис. 83,6. При этом показано, что теоретическое отношение энергетической теории прочности Дт=0,577 До достаточно хорошо подтверждается экспериментом Дт/Ло=0,572 0,574 0,585 здесь Ат — размах касательных напряжений. Подобные результаты получены С. И. Тайра, Г. А. Туликовым.  [c.146]

В главах 1-7 изложены основы сопротивления материалов расчет прямых стержней при простейших видах напряженно-деформированного состояния и стержневых систем, в том числе, ферм и пружин. Главы 9-14 сборника охватывают основы теории напряженного и деформированного состояний, прочность стержневых систем при сложном напряженном состоянии, безмомент-ные оболочки вращения, продольно-поперечный изгиб и устойчивость стержней, модели динамического нагружения стержневых систем, учет эффектов пластичности и элементы методов расчета на усталость. Кроме того, добавлен материал, касающийся стержней большой кривизны, а также задачи повышенной сложности. Общие теоретические положения вынесены в первый параграф приложения. Основные гипотезы сопротивления материалов сформулированы в виде аксиом, что призвано подчеркнуть феноменологический подход к построению фундамента этой науки как раздела механики деформируемого твердого тела.  [c.6]

Теория предельных состояний (пятая теория). Рассмотренные выше четыре теории прочности демонстрируют единый с методологической точки зрения подход к решению проблемы выдвигается гипотеза о причине возникновения предельного состояния, которая в дальнейшем проверяется экспериментами. Не менее, а часто и более эффективным является так называемый феноменологический подход, когда теория строится на основе экспериментальных данных так, чтобы она не только могла бы охватить все возможные случаи, но и находилась бы в лучшем соответствии с этими данными. При построении теорий прочности впервые такой подход был использован О. Мором (1900). Он исходил из допуш,ения, что из всех плош адок с одинаковым по величине нормальным напряжением наиболее вероятно разрушение или текучесть на той, где окажется наибольшим касательное напряжение. А на плоскости Мора точки, соответствуюш ие этим слабейшим плош адкам, лежат на большой главной окружности круговой диаграммы Мора (см. рис. 11.9). Поэтому можно рассматривать только эту окружность и считать, что а2 никак не влияет на предельное состояние.  [c.355]

В настоящее время предложено много гипотез относительно критериев равнопрочности. Большинство этих критериев получено при использовании основных соотношений механикн сплошной среды. Поэтому в первом разделе книги, посвященном систематизации, анализу и дальнейшему развитию критериев прочности материалов при сложном напряженном состоянии, кратко изложены некоторые вопросы теории напряжений и деформаций с акцентом на характеристики, которые впоследствии используются для описания предельных состояний материала.  [c.6]

Статистическое обобщение теории Кулона — Мора проведено С. Д. Волковым на основе новой модели микроскопически-неод-нородной среды. Гипотеза слабого звена является исходой предпосылкой статистической теории Фишера и Холломона. Интересные подходы при описании прочности стохастически неоднородных тел развиваются в работах В. В. Болотина. Попытка построения критерия хрупкой прочности при сложном напряженном состоянии с позиций линейной механики разрушения сделана В В. Панасюком.  [c.7]

В литературе предлагались различные критерии предельного состояния, т. е. различные соотношения между инвариантами, позволяющие установить опасность любого напряженного состояния по ограниченному числу простейших механических испытаний материала. Широко известны классические теории прочности (пластичности), рассматривающие изотропные материалы с одинаковыми пределами прочности на растяжение и сжатие (теории наибольших нормальных напряжений, удлинений, касательных напряжений, теория энергии формоизменения), а также различные варианты новейших энергетических теорий (критерии Ю. И. Ягна, П. П. Баландина, К. В. Захарова и др.), основанные на гипотезе А. Надаи о наличии функциональной связи между октаэдрическими касательными и нормальными напряжениями и описывающие условия перехода в предельные состояния как изотропных, так и анизотропных материалов с различным сопротивлением растяжению и сжатию. Подробное рассмотрение этих теорий содержится в монографиях [34, 39, 106, 130, 1311 и останавливаться на них здесь нет необходимости. Рассмотрим наиболее интересные достижения последних лет, уделив особое внимание критериям прочности (пластичности) для изотропных и слабоанизотропных материалов, к каковым относятся стеклообразные и кристаллические полимеры.  [c.206]

Эта теория была высказана фрашдузскими учеш>1ми, сначала Треска, а затем уточнена Сен-Венаном и в ряде учебников называется третьей теорией прочности. Суть этой теории заключается в следующем. Как известно, образование остаточных (пластических) деформаций в металлах происходит путем сдвига частиц относительно друг друга, а сдвиг обусловлен наличием касательных напряжений. Это обстоятельство позволяет высказать следующее теоретическое предположение (гипотезу) наступление в деформируемом теле опасного пластического состояния (при сложном напряженном состоянии) происходит тогда, когда наибольшее из касательных напряжений достигает предела текучести.  [c.161]


Смотреть страницы где упоминается термин Теория напряженного состояния и гипотезы прочности : [c.240]    [c.45]    [c.263]    [c.265]    [c.46]    [c.119]    [c.92]    [c.186]    [c.279]   
Смотреть главы в:

Что нужно знать о сопротивлении материалов  -> Теория напряженного состояния и гипотезы прочности

Что нужно знать о сопротивлении материалов  -> Теория напряженного состояния и гипотезы прочности

Прикладная механика. Раздел Сопротивление материалов. Ч.1  -> Теория напряженного состояния и гипотезы прочности



ПОИСК



Гипотеза

Гипотезы прочности

Напряженные состояния и гипотезы прочности

Напряженные состояния. Теории прочности

Состояние теории

Теории прочности

Теория Гипотезы

Теория напряженного состояния



© 2025 Mash-xxl.info Реклама на сайте