Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплавы кремний—железо и кремний—никель

СПЛАВЫ КРЕМНИЙ—ЖЕЛЕЗО И КРЕМНИЙ—НИКЕЛЬ  [c.384]

Сплавы кремний—железо и кремний — никель  [c.305]

Влияние легирования железом и кремнием ка коррозионное поведение алюминиевого сплава с 0,5% никеля в воде при =350 С  [c.200]

В алюминиевых сплавах, кроме основных легирующих элементов, присутствуют небольшие количества примесей. Некоторые из них (железо и кремний) имеются в исходном алюминии, другие (цинк и никель) попадают в сплавы при переплаве отходов, третьи (бериллий, титан и цирконий) вводят специально в качестве технологических добавок.  [c.101]


В магнии, полученном путем электролиза, в качестве металлических примесей всегда присутствуют железо и кремний в количестве до 0,05%. Кроме того, в магниевых сплавах находятся в качестве примесей такие элементы, как медь, никель, кобальт.  [c.195]

Аммиак, действие на алюминий и его сплавы 120, 124—125 берил-лиевую бронзу 237 железо 26 латунь 596 магний и его сплавы 165 медь 180, 719. никель 249, 254 ниобий 382 олово 337 серебро 355, 356, 779 сплав железа с кремнием 106 сплавы кобальта 752 сплавы меди 192, 195--197, 200—201, 209, 222, 233, 2,35 сплавы никеля 258, 268—269, 273, 287, 290, 296, 728 тантал 784 титан 388 хромоникелевую сталь  [c.1225]

Сплавы цветных металлов, полученные на основе меди и алюминия, широко распространены в машиностроении. В обозначении сплавов цветных металлов основным компонентам присваиваются следующие литеры А — алюминий, Ж — железо, К — кремний, Мг — магний, Мц — марганец, Н — никель, О — олово, С — свинец, Ф — фосфор, Ц — цинк.  [c.290]

Латуни разделяют на двойные (сплавы Си — Zn) и сложные, дополнительно содержащие следующие компоненты свинец, кремний, марганец, алюминий, железо, никель, олово.  [c.35]

Наиболее эффективными легирующими компонентами, повышающими устойчивость железа к окислению на воздухе, являются алюминий и хром, особенно если использовать их с добавками никеля и кремния. Отмечено, что сплав 8 % А1—Fe обладает такой же устойчивостью к окислению, как и сплавы 20 % Сг— 80 % Ni [55]. К сожалению, применение стойких к окислению А1—Fe-сплавов ограничено их низкими механическими свойствами, малой прочностью защитных оксидных пленок и способностью алюминия образовывать нитриды, вызывающие охрупчивание. Некоторые из этих недостатков А1—Fe-сплавов преодолеваются посредством легирования хромом.  [c.204]

Легирование железа и никеля кремнием обеспечивает коррозионную стойкость сплавов в различных средах, особенно в сильных неокислительных кислотах. Эти сплавы хрупкие, поэтому они могут разрушаться при резких перепадах температуры и при ударе. Сплав кремний—никель имеет значительно больший предел прочности и менее склонен к разрушениям. Эти сплавы применяют только в виде литья, и обычно требуется дополнительная шлифовка изделий. Сплав кремний—никель с трудом поддается механической обработке. Твердость этого сплава тем выше, чем быстрее его охлаждают, примерно от 1025 °С.  [c.384]

Введение малых количеств (до 1%) многих легирующих зле-ментов приводит к понижению твердости, так как эти элементы являются раскислителями. Однако при одном и том же содержании легирующих элементов твердость молибденовых сплавов будет тем выше, чем меньше растворимость легирующих элементов в молибдене. Наибольшее повышение твердости дает легирование молибдена бором и кремнием. В меньшей мере повышает твердость молибдена никель, кобальт, железо, алюминий, хром, цирконий. Не-  [c.91]


Аморфные магнитные материалы. В последнее время уделяется большое внимание вопросам получения и применения аморфных магнитных материалов (АММ). Такие материалы получаются при быстром охлаждении из расплавленного состояния без кристаллизации. Быстрое охлаждение расплавленного сплава достигается различными технологическими приемами, среди которых есть непрерывные или полунепрерывные методы. Аморфная структура получается при скорости охлаждения расплава до 10 °С/с. Современными методами можно изготовить из аморфного материала проволоку или ленту различного профиля непосредственно из расплава со скоростью до 1800 м/мин. АММ обладает очень высокими магнитными характеристиками наряду с повышенным сопротивлением. Перспективными высокопроницаемыми материалами являются аморфные сплавы железа и никеля с добавками хрома, молибдена, бора, кремния, фосфора, углерода или алюминия с магнитной проницаемостью до 500, коэрцитивной силой Не около 1 А/м и индукцией насыщения В., от 0,6 до 1,2 Тл.  [c.99]

Наличие около 0,1% примеси железа в чистом алюминии повышает его скорость растворения в 2 н. соляной кислоте в 160 раз, а содержание 0,1% меди — в 1600 раз. Кремний и магний практически не оказывают вредного влияния на коррозионную устойчивость алюминия. Цинк в небольших количествах также безвреден, но алюминиевые сплавы, содержащие магний и цинк, неустойчивы. Коррозионную устойчивость этих сплавов повышают путем дополнительного легирования медью, хромом или ванадием. Свинец не оказывает никакого влияния при содержании до 0,5—1,4%. Кобальт и никель чаще всего более вредны, чем медь.  [c.133]

Сплавы серии 2000 могут содержать добавки марганца, кремния, железа, никеля, лития, кадмия, олова, циркония, ванадия и титана в зависимости от специфики применения. Большинство ис-  [c.238]

Состав и свойства. Химический состав. Основными легирующими элементами деформируемых сплавов (табл. 7) являются медь, магний, марганец, цинк, кремний, а также титан, хром, бериллий, никель, цирконий, железо и др.  [c.13]

Железо, алюминий, никель и кобальт являются основными компонентами. Медь, титан и ниобий относятся к легирующим присадкам. Углерод, сера, фосфор, марганец и кремний — примеси, допустимое содержание которых составляет доли процента. Исключением является только кремний, который в зависимости от процентного содержания никеля является или вредной примесью или легирующим элементом, Влияние содержания элементов на свойства сплавов приведено в табл. 24.  [c.97]

Алюминиевые литейные сплавы (ГОСТ 2685—63) для изготовления фасонных отливок выпускают 35 марок, подразделенных на 5 групп I — сплавы на основе алюминий— магний II — алюминий—кремний III — алюминий—медь IV — алюминий—кремний—медь V — алюминий—никель, цинк, железо и др., механические свойства которых приведены в табл. 3. В таблице указаны спо-  [c.78]

Применялись также износостойкие самофлюсующиеся твердые сплавы, имеющие примерно следующий химический состав хром—15—20% кремний —3—5% бор— 3—5% углерод— 0,9—1,0% остальное никель, и сплавы на основе никеля и железа (в том числе сплавы, содержащие очень небольшое количество никеля). Они по эффективности почти не уступают сплавам, выпускаемым промышленностью, но имеют более низкую стоимость.  [c.236]

Глава XXIV. Сплавы кремний — железо и кремний — никель 305  [c.8]

Раствор для травления, приведенный Д Ансом и Лаксом [11], и состояший из 100 мл воды, 8 мл серной кислоты, 4 мл насыш,енного раствора хлористого натрия и 2 мл бихромата калия, по указанию Базетта [25], хорошо протравливает а-сплавы меди с бериллием. Как и при других бихроматных травлениях (см. реактив 10, гл. XIII и реактив 13, гл. XIV), для потемнения 7-фазы в а (а + 7)-сплавах используют последующее травление реактивами хлорного железа или электролитическую обработку в течение 10—15 с раствором сернокислого железа (И) следующего состава 1900 мл воды 100 мл серной кислоты 0,4 г едкого натра и 50 г сернокислого железа [II]. Этот реактив служит, кроме того, для выявления структуры сплавов меди с марганцем, кремнием, никелем и цинком (нейзильбер), бронз и т. д.  [c.207]

Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]


Никель — серебристо-белый металл, широко применяемый в электровакуумной технике его достаточно легко получить в очень чистом виде (99,99 Ni) иногда в него вводят специальные легирующие присадки (кремний, марганец и др.). Получаемый из руд никель подвергают электролитическому рафинированию. Очень чистый по рошкообразнын никель можно получить путем термического разложения пентакарбонила никеля Ni( 0)5 при температуре 220 С. Никель выпускается различных марок (в зависимости от чистоты) в виде полос, пластин, лент, трубок, стержней и проволоки. К положительным свойствам никеля следует отнести достаточную механическую прочность после отжига (ар == 400—600 МПа при Д/// — — 35—.50 %). Никель легко поддается даже в холодном состоянии механической обработке (ковке, прессовке, прокатке, штамповке, волочению и т. п.). Из никеля могут быть изготовлены различные по размерам, сложные по конфигурации изделия с жестко выдержанными допусками. Стойкость никеля к окислению наглядно видна из рис. 7-10. Помимо применения в электровакуумной технике, никель используют в качестве компонента ряда магнитных и проводниковых сплавов, а также для защитных и декоративных покрытий изделий из железа и т. п.  [c.216]

Причина повышенной чувствительности к трещине материала плавки А по сравнению с плавкой Б заключалась в наличии в нем крупных скоплений грубых включений, что подтвердилось микрофрактографическим исследованием на поверхности изломов образцов, вырезанных из разрушившейся детали и других деталей той же плавки, наблюдались колонии грубых включений, между которыми располагаются микроучастки малопластичного разрушения, в то время как на изломах образцов из деталей плавки Б такие скопления не наблюдались, микростроение излома пластичное, ямочное (рис. 88). Локальный рентгеноспектральный анализ показал существенную неоднородность распределения никеля, железа и кремния. При среднем содержании кремния 0,24% в отдельных зонах материала аварийной детали его содержание достигает 0,76%, в материале плавки Б максимальное значение содержания кремния составляло 0,37% Отрицательное влияние таких факторов, как наличие металлургических дефектов или концентраторов напряжений в виде забоин или рисок, особенно заметно проявляется при действии высоких рабочих напряжений. Так, в очаге усталостной трещины в детали из сплава Д1 был обнаружен дефект в виде шлакового включения (рис. 89, а). Микрофрактографический анализ показал большое количество интерметаллидов на поверхности излома в области очага разрушения (рис. 89,6). Развитие излома характеризовалось последовательным возникновением дополнительных очагов, также связанных со скоплениями включений. 116  [c.116]

Наряду с железом и железными сплавами широкое применение в современной технике находят алюминий и его сплавы. Алюминиевые сплавы делят на две группы деформируемые и недеформируемые (или литейные). Наиболее распространены силумины и дюралюминий. Силумины содержат 10—13% кремния и небольшое количество магния и обладают хорошей коррозионной стойкостью из-за образования на их поверхности защитного слоя SiOj. Дюралюминий отличается высокими механическими свойствами наряду с легкостью. Изделия из этого сплава при равной прочности в два раза легче стальных. Коррозионная стойкость чистого алюминия во много раз выше, чем алюминиевых сплавов, в особенности сплавов, содержащих медь, железо и никель. Несмотря на то что алюминий имеет отрицательный потенциал (—1,67В), он является довольно коррозионностойким во многих средах в воде, в большинстве нейтральных сред и в сухой атмосфере. Такое поведение алюминия обусловлено его способностью к самопассивации. В зависимости от условий алюминий покрывается защитной пленкой разной толщины — от 150 до ЮООА, которая состоит из AljOj или AljOj  [c.72]

Коррозионные свойства хромистых сталей во многом зависят от содержания в них углерода. При увеличении содержания углерода до 0,3-0,4 % в сталях с 13-15%-ным содержанием хрома наблюдается резкое понижение коррозионных свойств. Следует иметь в виду, что высокохромистые стапи после закалки имеют более высокую коррозионную устойчивость, чем в отожженном состоянии. Никель сам по себе легко активируется ионами хлора, однако введение его в сплав железо-хром резко повышает сопротивление сплава активирующему действию хлоридов благодаря приданию стали аустенитной структуры, обладающей повышенной стойкостью в растворах хлоридов, т.е< стойкостью к точечной коррозии. Наиболее устойчиво сохраняется в растворах хлоридов пассивное состояние стали с полностью аустенитной структурой. Молибден и кремний препятствуют активированию нержавеющих сталей ионами хлора.  [c.72]

К- Видем [111,201] считает, что сплавы алюминия, легированные железом и кремнием, стойки до температуры 200° С. Сплав алюминия с концентрацией 1% никеля и выше 0,1% кремния быстро разрушается при 350° С [111, 172]. Однако добавка к этому сплаву 0,2—1,0% железа сообщает сплаву высокую стойкость. Удовлетворительную стойкость при температуре 315° С имеет сплав с концентрацией 12% никеля, 0,5—1,5% железа и до 0,01% кремния [111, 201]. При совместном легировании алюминия никелем, железом  [c.199]

Самофлюсующиеся порошки получили наибольшее распространение в практике восстановительно-упрочняющих технологий. Особое преимущество материалов этого класса состоит в том, что качественное оплавление покрытия происходит без применения дополнительных флюсов или защитных сред. Химический состав сплавов обеспечивает пониженную температуру плавления, расплав хорошо смачивает наплавляемую поверхность, удаляет оксидные пленки, частично растворяет подложку, что в конечном итоге приводит к формированию высококачественного покрытия с минимальной пористостью, высокой прочностью сцепления с основой и ровной, гладкой поверхностью. Основными элементами, обеспечивающими самофлюсование сплава, являются бор и кремний. Эти элементы имеют высокое сродство к кислороду. При взаимодействии с оксидами они ведут себя как энергичные восстановители, образуя В2О3 и SiOj в виде стекловидного шлака на поверхности, защищая таким образом металл от окисления. Помимо флюсования бор и кремний улучшают жидкотекучесть и уменьшают поверхностное натяжение расплава. В настоящее время выпускают самофлюсующиеся порошки на основе кобальта, никеля и железа. Есть сведения о самофлюсующихся порошках на основе меди.  [c.195]


В сплавах системы А1—Си—Мд—Мп (Д16, Д1 и др.), содержащих железо и кремний в виде примесей, при введении никеля фаза Ре№А10 не образуется. Присутствующее в сплаве железо входит в соединение А1РеМп81.  [c.102]

Марки сплавов состоят из двухзначного числа, обозначающего среднее содержание элемента в процентах, входящего в состав сплава (кроме железа), и буквенного обозначения этого элемента, которое ставится непосредственно пос. 1е числа, Химические элементы в марках сплавов обозначают следующими буквами В — во 1Ьфрам, Д — медь. К—кобачьт, М — молибден, Н — никель. С —кремний. Т — титап, Ф — ванадий, 10 — алюминий. X — хром, Б — ниобий. Р — бор, Л — бериллий.  [c.438]

Штейны —сплавы СнгЗ и РеЗ однако суммарное содержание меди, железа и серы в них редко превышает 80 — 90% остальное — сульфиды цинка, свинца, никеля, а также окислы железа, кремния, алюминия, кальция, частично растворенные в штейне и увлеченные им из шлака в виде эмульсий и суспензий.  [c.74]

В связи с большим содержанием железа в сплаве хром, марганец и кремний вводят в шикту не в свободном состоянии, а в форме более дешевых ферросплавов. Никель обычно вводят в форме свободного металла. Железо добавляют в виде чугунного или стального лома.  [c.1001]

Анализ имеющихся в литературе опытных данных о скорости окалинооб-разования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование.  [c.102]

Латуни подразделяются на двойные сплавы медн с цинком, в которых содержание цинка доходит до 50 о, и многокомпонентные, имеющие в своем составе также алюминий, железо,, марганец, свинец, никель и другие добавки, повышающие механические и физические свойства латуни. Латуни обладают хорошими механическими свойствами, высоким сопротивлением коррозии, хорошо поддаются механической обработке. Их обозначают буквой Л и условным буквенным обозначением основных компонентов, а также числами, обозначающими среднее содержание меди и компонентов. Например, ЛК80-3 — кремнистая латунь, содержащая 80 меди и 3% кремния (остальное — цинк).  [c.163]

Реактив 23 (с. 188) особенно пригоден для выявления силицидов никеля, хрома и кобальта в Корзон-сплавах (высокопрочный сплав меди с содержанием 0,6—9% кремния + никель, хром, кобальт и железо). Продолжительность травления составляет около 5—10 с.  [c.209]

Добавка кремния, например к сплаву 2014, используется для того, чтобы сделать для сплавов системы А1— u Mg более эффективным искусственное старение [116]. Добавки железа и никеля (сплав 2618) служат для увеличения прочности сплавов системы А1—Си— lg при повышенных температурах. Это происходит в результате присутствия интерметаллидной фазы Ре141А19, которая образуется во время затвердевания (литья) и не растворяется при последующих операциях термообработки. Указанные частицы уменьшают и стабилизируют размер зерна конечного продукта, а также увеличивают сопротивление ползучести сплава. Они оказывают небольшое влияние на характер дисперсион-  [c.238]

Оловянистые бронзы дефицитны и дороги. В последнее-время найдены сплавы меди с алюминием, никелем, марганцем, железом, кремнием, хромом и другими металлами — полноценные заменители оловянистой бронзьи.  [c.158]

Барий — мягкий блестящий неталл, весьма химически активный, взаимодействует с водой, кислородом, а.зотом, водородом. Особые условия хранения. Выпускается двух марок Бр-1 и Бр-2, различающихся содержанием примесей железа, меди, кремния, свинца, хрома, кадмия и цинка в виде друз или плавленых штабиков, которые могут быть покрыты слое.м окиси. Применяется в качестве четтера в электровакуумной технике, в антифрикционных сплавах, в сплаве с никелем для запалов автосвечей и т. д.  [c.169]

Углерод, кремний и железо уменьшают стабильность никель-хромомолибденового твердого раствора и ускоряют его распад с образованием карбидных и интерметаллидных фаз, а также расширяют интервал их существования к боЛее высоким температурам. Углерод вызывает выделение из твердого раствора карбида типа Ме С. Кремний и железо в сплаве Х15Н70М15 способствуют выделению карбида типа Ме С, а в сплаве ХН65МВ— fi-фазы. В сплаве Х15Н70М15 кремний приводит также к выделению фазы типа АВа-  [c.149]


Смотреть страницы где упоминается термин Сплавы кремний—железо и кремний—никель : [c.110]    [c.90]    [c.235]    [c.306]    [c.62]    [c.187]    [c.113]    [c.257]    [c.253]    [c.338]    [c.385]    [c.303]   
Смотреть главы в:

Коррозия и борьба с ней  -> Сплавы кремний—железо и кремний—никель



ПОИСК



Железо и сплавы —

Железо сплав с никелем

Железо — кремний

Железо — никель

Кремний

Кремний и сплавы

Никель

Никель и сплавы никеля

Сплавы железа и сплавы никеля

Сплавы никеля



© 2025 Mash-xxl.info Реклама на сайте