Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород Тепловые

Удельный расход преобразованного топлива (6" п.т — видимого, 6Г.П.Т — товарного, Ап п т — первичного) определяется по затратам топлива на производство различных форм энергии, например, электрической, кислорода, тепловой, сжатого воздуха (преобразованной энергии), израсходованной на единицу технологического продукта или полупродукта в ВТУ.  [c.58]

Наиболее полно все факторы коррозии могут быть исследованы в лабораторных условиях. Кроме характеристик, получаемых при проведении натурных и полевых испытаний в лабораторных исследованиях могут быть определены количество выделившегося водорода или поглощенного кислорода, тепловой эффект, скорость коррозии на основе поляризационных кривых и другие показатели.  [c.50]


Бутилкаучук обладает высокой стойкостью к действию кислорода, тепловому старению, действию кислот и щелочей характеризуется исключительно низкой газопроницаемостью. Основные недостатки — низкая эластичность и хладотекучесть.  [c.85]

При полном отсутствии влаги и кислорода тепловое старение клетчатки приобретает особый характер — про-Р Сходит чисто термическая деструкция, пиролиз. Этот процесс, сопровождающийся выделением большого количества разнообразных, газообразных и жидких продуктов, требует достаточно высокой температуры — порядка 250 С.  [c.118]

Как указывалось, при управлении плавкой важно не просто окисление углерода и получение заданного содержания его в конечном металле, но и проведение этого процесса синхронно- с процессом нагрева ванны. Синхронизация этих двух процессов в общем случае является сложной задачей, так как, во-первых, в зависимости от источника кислорода тепловой эффект реакции окисления углерода может изменяться от резкого поглощения тепла до значительного выделения его во-вторых, по ходу процесса энтальпия металла может изменяться (увеличиваться или уменьшаться) под действием других процессов, кроме реакции окисления углерода. В этом сложном переплетении тепловых явлений, связанных с синхронным проведением процессов обезуглероживания и нагрева ванны, первостепенное значение имеет правильный учет и умелое регулирование (в пределах возможного) теплового эффекта реакции окисления углерода.  [c.180]

При газовой сварке для концентрированного нагрева применяют горючий газ (ацетилен или другие газы, сжигаемые в кислороде) при электросварке — тепловую энергию электричества.  [c.288]

При газовой сварке для концентрированного нагрева применяют горючий газ (ацетилен или другие газы, сжигаемые в кислороде) при дуговой — тепловую энергию электричества. В мащиностроении находят широкое применение дуговая и контактная сварка.  [c.248]

Рис. 3.19. Изменения К (273,16 К) платинового термометра сопротивления под действием тепловой обработки при указанной температуре в кислороде под давлением 83 кПа [32]. Рис. 3.19. Изменения К (273,16 К) <a href="/info/251578">платинового термометра сопротивления</a> под действием <a href="/info/305680">тепловой обработки</a> при указанной температуре в кислороде под давлением 83 кПа [32].
В технике очень часто приходится иметь дело с газообразными веществами, представляющими механическую смесь отдельных газов, например, доменный и светильный газ, отходящие газы из котельных установок, двигателей внутреннего сгорания, реактивных двигателей и других тепловых установок. Воздух также представляет собой газовую смесь, состоящую из азота, кислорода, углекислого газа, водяных паров и одноатомных газов. Поэтому для решения практических задач необходимо уметь определять основные параметры газовой смеси газовую постоянную, среднюю молекулярную массу, парциальные давления и др.  [c.30]


На рис. 3.16 приведены типичные профили мольных долей NH3,N2, Н2, О2 в потоке внутри матрицы. Часть аммиака разлагается еще до подхода к пористой стенке. Наличие кислорода внутри матрицы обусловлено диффузией его из внешнего пограничного слоя. Горение продуктов разложения охладителя в богатом кислородом внешнем пограничном слое приводит к дополнительному существенному увеличению расхода охладителя для компенсации вызываемого горением увеличения теплового потока.  [c.66]

Тепловые характеристики газового пламени (температура, эффективная тепловая мощность, распределение теплового потока пламени по пятну нагрева) зависят от теплотворной способности горючего газа, чистоты кислорода и их соотношения в смеси.  [c.14]

Наиболее актуальные задачи, которые решают с использованием термодинамики и теплопередачи создание летательных аппаратов, в том числе космических многоразового действия проектирование тепловых и атомных электрических станций, магнитогидродинамических генераторов (установок для прямого преобразования теплоты в электрическую энергию), холодильных установок умеренного холода, холодильных установок глубокого холода, например, для получения жидких кислорода, азота, водорода, гелия и других газов проектирование машин и разработка технологических процессов в пищевой, химической и других отраслях промышленности. В перечисленных задачах термодинамические и тепломассообменные процессы играют важ ную, а иногда и определяющую роль при выборе конструкции.  [c.3]

Следует отметить, что воспламенение и горение возможны не только в атмосфере, содержащей кислород. Многие металлы горят в атмосфере, содержащей хлор, пары серы и т. д. Кроме того, значительным тепловым эффектом обладают некоторые экзотермические реакции разложения как газообразных, так и конденсированных реагентов.  [c.217]

Решить предыдущую задачу, если плотность отводимого теплового потока равна 180 кВт/м, а кипящей жидкостью является азот или кислород.  [c.283]

Большинство газомазутных топок имеют традиционную призматическую форму со слабо наклонным подом (15—20°) и одностороннюю (рис. 37, а) или встречную (рис. 37, б) компоновку горелок. Известны топки циклонного типа (рис. 37, в) и с подовым расположением горелок (рис. 37, г). Как показывает опыт эксплуатации, применение сложной конструкции топок с циклонами не оправдывает себя. Как положительный фактор схемы рис. 37, г можно отметить небольшое значение локальных тепловых потоков на экраны, а в схемах рис. 36, в и г снижение образования оксидов азота и серы за счет подавления генерации атомарного кислорода путем принудительного подвода к корню факела инертных продуктов сгорания.  [c.80]

В этом уравнении тепловой эффект реакции, данный в числителе, учитывает теплоту конденсации водяных паров, образующихся при сжигании водорода и охлаждении конденсата до 273 К. В знаменателе приведен тепловой эффект 238 МДж/кмоль Н2 при отсутствии конденсации паров воды. Таким образом, на 1 кг водорода приходится 8 кг или 5,55 м кислорода и 9 кг или 11,12 м воды.  [c.147]

Источники энергии и рабочие тела реактивных двигателей. Источником энергии в ВРД любого типа является топливо, химическая энергия которого преобразуется в тепловую в результате экзотермических реакций, происходящих при наличии окислителя — кислорода воздуха, проходящего через двигатель. Чем больше высота полета, тем плотность воздуха меньше, содержание кисло-  [c.270]

Различные газы обла,п,ают различной способностью излучать и поглощать энергию. Одно- и двухатомные газы с симметричными молекулами (кислород, азот и др.) практически прозрачны для теплового излучения. Значительной способ-  [c.110]

При сжигании топлива входящие в его состав горючие элементы соединяются с кислородом воздуха. При этом происходит преобразование химической энергии топлива в тепловую, идущую на нагрев продуктов сгорания топлива.  [c.40]

ГС — способ сварки плавлением, при котором металл в сварочной зоне нагревается пламенем газа (ацетилена, метана), сжигаемого для этой цели в смеси с кислородом в сварочных горелках. Преимущество ГС —это ее универсальность. С помощью ГС можно сваривать металлы различной толщины с различными свойствами (стали, чугуны, цветные металлы). Недостатками ГС являются трудность автоматизации процесса и длительное тепловое воздействие на металл, что приводит к изменению структуры и формы сварного соединения.  [c.57]


Система уравнений для определения состава и температуры продуктов сгорания топлива (1 кг горючего + v кг окислителя), состоящего из углерода, водорода, кислорода и азота, характерного для тепловых двигателей, может быть записана в следующем виде  [c.218]

Диэлектрическая проницаемость чистых кварцевых и борных стекол без примесей немного превышает квадрат коэффициента преломления стекла, так как она определяется, главным образом, электронной поляризацией. У стекол сложного состава (технических стекол) при введении щелочных или щелочно-земельных металлов структурная сетка стекла изменяется. При введении щелочного окисла в стекло вводится избыточный кислород, и уже не каждый атом кислорода связан с двумя атомами кремния. Часть атомов кислорода связана с одновалентным атомом щелочного металла. Такой атом отдает один электрон ближайшему атому кислорода и оказывается положительным ионом. Одновалентный ион имеет большую свободу перемещения и может создавать тепловую ионно-релаксационную поляризацию.  [c.13]

Для. предварительной оценки необходимой площади поверхности теплообмена можно задаться значением коэффициента теплопередачи к. Однако в данном случае удобнее задаться непосредственно средней для всей активной поверхности греющей секции плотностью теплового потока q, так как эта величина входит в число аргументов расчетных уравнений как для определения коэффициента теплоотдачи к кипящему кислороду, так и для определения коэффициента теплоотдачи при конденсации пара.  [c.416]

Суммарный тепловой поток, передаваемый в аппарате от азота к кислороду,  [c.424]

Горением топлива называется химическое соединение горючих элементов топлива с кислородом воздуха, происходящее с интенсивным выделением тепловой энергии. В результате химических реакций окисления топлива образуются продукты сгорания.  [c.105]

Помимо температуры существенное влияние на скорость старения могут оказать изменение давления воздуха или концентрации кислорода, присутствие озона, являющегося более сильным окислителем, чем кислород, а также различных химических реагентов, ускоряющих или замедляющих старение. Тепловое старение образца ускоряется под действием ультрафиолетовых лучей, электрического поля, механических нагрузок и т. п.  [c.81]

К классу А относятся те же самые органические волокнистые материалы, будучи пропитанными лаками, либо компаундами, или же погруженными в жидкий электроизоляционный материал, т. е. защищенными от непосредственного соприкосновения с кислородом воздуха, который ускоряет тепловое старение материалов (провод с хлопчатобумажной изоляцией в пропитанной лаком обмотке элект-трической машины или же в погруженной в электроизоляционное масло обмотке маслонаполненного трансформатора лакоткани на хлопчатобумажной или шелковой основе и масляных или битумно-  [c.82]

Для восстановления первоначальных магнитных свойств магнитомягкие материалы подвергают отжигу, который снимает внутренние напряжения и вызывает рекристаллизацию зерен. Магнитные свойства зависят от размера зерна. Поверхностные слои зерен вследствие искажения строения кристаллов характеризуются повышенной коэрцитивной силой. При мелкозернистом строении суммарная поверхность зерен в единице объема больше, чем при крупнозернистом материале, поэтому в материале, состоящем из мелких зерен, влияние поверхностных искажений слоев сказывается сильнее и у него коэрцитивная сила больше. Внутренние напряжения нередко связаны с наличием в материале различных загрязнений, например кислорода в чистом железе, примесей или присадок кобальта, хрома, вольфрама. Используя примеси, усложняющие кристаллическую решетку, вводя технологическую операцию закалки, а иногда добиваясь ориентации структуры доменов в магнитном поле, получают магнитотвердые материалы. При перемагничивании ферромагнетиков в переменных магнитных полях всегда наблюдаются тепловые потери энергии. Они обусловлены потерями на гистерезис и динамическими потерями. Динамические потери вызываются вихревыми токами, индуцированными в массе магнитного материала, а отчасти и так называемым магнитным последействием, или магнитной вязкостью. Потери на вихревые токи зависят от электрического сопротивления ферромагнетика. Чем выше удельное сопротивление ферромагнетика, тем меньше потери на вихревые токи. Магнитное последействие особенно заметно проявляется в магнитомягких материалах в области слабых полей.  [c.272]

Помимо упомянутых выше ухудшающих качество электрической изоляции изменений, которые проявляются уже в случае кратковременного повышения температуры, при длительном воздействии повышенной, но еще не действующей вредно в течение короткого времени температуры могут наблюдаться нежелательные изменения за счет медленно протекающих химических, процессов, это — так называемое тепловое старение изоляции. У трансформаторного масла старение проявляется в образовании продуктов окисления (см. гл. 3), у лаковых пленок — в повышении жесткости и хрупкости, образовании трещин и отставании от подложки (см. гл. 4) и т. п. Для проверки стойкости электроизоляционных материалов к тепловому старению образцы этих материалов длительно выдерживают в термостатах при заданной температуре свойства старевших определенное время образцов измеряют и сравнивают со свойствами свежего непостарезшего материала. Помимо температуры, существенное влияние на скорость старения могут оказать повышение давления воздуха или концентрации кислорода присутствие озона, являющегося более сильным окислителем, чем кислород, а также различных химических реагентов, ускоряющих или замедляющих старение. При работе органической изоляции без доступа кислорода тепловое старение замедляется.  [c.20]


Параметры газа на выходе определяются на основе материальныа балансов углерода, водорода и кислорода, теплового баланса зоны и опыт-  [c.107]

Многие вещества, например, Нг или СН4 используются во многих устройствах в виде топлива. Выделяемая при их реакции окисления с кислородом тепловая энергия может быть преобразована непосредственно в электрическую энергию. Так как горение представляет собой окислительновосстановительную реакцию, в принципе ее можно использовать для преобразования сначала в механическую (с помощью теплового двигателя), а затем в электрическую энергию (с помощью генератора). При таком преобразовании энергии происходят неизбежные ее потери (рассеивание в окружающую среду). Только не более 40% тепловой энергии удается преобразовать в механическую энергию. Прямое получение электрической энергии из топлив при помощи гальванических элементов должно обеспечить более высокий коэффициент преобразования химической энергии топлив в электрическую энергию. Гальванические элементы, в которых реагентами являются традиционные топлива, называются топливными элементами.  [c.262]

Повышение температуры влечет за собой также возможность возникновения термогальваниче-ских пар вследствие разности температур отдельных зон одного и того же металла аппарата. Между отдельными участками поверхности нагрева с различными тепловыми папря/кениями может возникать э. д. с., достаточная для частичного электролиза котлоеюй воды с выделением кислорода.  [c.79]

Температуры системы таковы, что непрерывную фазу можно считать прозрачной для теплового излучения. Это условие, вообще говоря, выполняется для большинства одноатомных II некоторых двухатомных газов, таких, как азот, кислород пли гелий, при не слишком высоких телгаературах, например ниже 3000° К [528].  [c.77]

Эйкен [25] измерил теплопроводность неметаллов в интервале от температуры жидкого кислорода до комнатной и нашел, что она изменяется как 1/Т. Дебай [8] показал, что такой же результат следует пз теории. Впоследствии этот вывод был подтвержден квантовомеханическим рассмотрением Пайерлса [9, 10]. Пайерлс предсказал также, что удельное тепловое сопротивление должно экспоненциально уменьшаться с понижением температуры, так как оно вызывается процессами переброса (Umklapp-процес-сами), вероятность которых надает при низких температурах. Померанчук [13, 14] и Клеменс [20] обобщили теорию Пайерлса.  [c.225]

Утечки тепла от нагревателя п термометров к окружающему экрану должны быть максимально уменьшены, так как они искажают истинный тепловой поток, текущий через образец кроме того, если существует значительная утечка тепла через термометры, то контактное сопротивление в точке пх прикрепленпя может исказить значения измеряемых температур н Влияние первого из этих эффектов (но не второго) можно учесть, еслн предварительно проделать опыт с плохим проводником тепла с известной теплоиро-родностью [391. В то время как утечки тепла по газу и твердым телам могут быть уменьшены, потерн тенла на пзлучение, быстро увеличивающиеся с температурой, делают статический метод несколько ненадежным при высоких температурах, однако ниже температуры жидкого кислорода эти потери невелики и могут быть учтены.  [c.226]

Эйкен и Кун [26] измерили тепловое сопротивление смешанных кристаллов КС1 и кВг при сравнительно высоких температурах (при температурах жидкого кислорода). Добавочное тепловое сопротивление, вызванное эффектом самого смешивания, почти не зависело от температуры. То же самое было найдено Девятковой и Стилбансом [47] в случае кристаллов КС1 с известной концентрацией -центров в той же температурной области. Эксперименты последних дали бы исключительно интересные результаты, если бы были проделаны при водородных температурах.  [c.252]

Обычно роль твердого окислителя выполняет перх.ю-рат аммония, а роль связующего (связки) — каучуки, мo ы, пластмассы. Иногда для повышения теплового эффекта ю-рення добавляют металлы (алюминий, бериллий, литий) 37]. Коллоидными твердыми топливами называют гомогенные органические соединения, молекулы которых содерн ат богатые кислородом нитро(И02)- или нитратные (ОИОа) группы, слабо связанные с атомами углерода.  [c.266]

В зависимости от способа получения силы тяги все реактивные двигатели делятся на две основные группы — воздущно-реактивные и ракетные (рис. 6.1). В воздущно-реактивных двигателях основным компонентом рабочего тела, осуществляющего термодинамический цикл, является атмосферный воздух,. кислород которого используется в качестве окислителя для преобразования химической энергии топлива в тепловую.  [c.256]

Тепловые ВЭР — физическая теплота уходящих газов ферритных, пиролизных, рудно-термических, дивинильных, каль-цинационных содовых печей, печей обжига известняка, плавильных котлов каустика, радиационно-конвективных подогревателей кислорода и метана, продуктовых потоков колонн синтеза (аммиака, метанола, карбамида), конвертеров природного газа и СО, хвостовых газов в производстве азотной кислоты, контактных аппаратов серной кислоты и др. Кроме того, тепловыми ВЭР являются охлаждающая вода, конденсат, дистиллерная жидкость, пар вторичного вскипания, феррит, шлак рудотермиче-ских печей.  [c.411]

При сжигании топлива, представляющего собой угле1родистые и углеводородистые соединения преимущественно растительного происхождения, элементы, входящие в состав топлива, соединяются с кислородом воздуха, выделяют теплоту и иагревают продукты сгорания. От продуктов сгорания тепловая энергия передается рабочему телу, которым обычно служит вода, сжатая до давления выше атмосферного.  [c.6]

Излучение газов обусловлено колебательными движениями атомов в молекулах, возникающими при соударениях молекул. Газы, молекулы которых состоят из однородных атомов (водород, кислород и азот), практически не излучают тепловых лучей и совершенно лучепрозрачны. Тр ехатомные газы и газы, характеризуемые большей атомностью, обладают значительной поглощательной и, следовательно, лучеиспускательной способностью.  [c.191]

Действительный тепловой поток, передаваемый азотом стенке, <Эаз = ai (Газ—f T)n i/i2 = 335 (95,46—93,97) X 3,14 0,012 0,25 X X 13990 = 66ООО Вт, что лишь на 2,2% меньше фпод, полученной в предположении, что кислород на рассматриваемом участке иароге-нерирующих труб подогревается на S7 2 = 0,09 К. Таким образом, температура кислорода на входе в активную зону равна 7вх= = 93,61 К.  [c.421]

Анализ продуктов сгорания в процессе эксплуатации тепловой установки производится с помощью газоанализаторов типа ВТИ, Норзе, Орса. При анализе газов с помощью прибора типа Орса (рис. 39) определяют содержание газов ROj, которые поглощаются водным раствором едкого калия или натрия, и содержание кислорода, который поглощается щелочным раствором пирогалловой кислоты. Таким образом осуществляется избирательное поглощение отдельных составляющих продуктов сгорания химическими реактивами. При выполнении анализа газов водяные пары конденсируются, поэтому полученные результаты относятся к сухим продуктам сгорания.  [c.111]

Газы также обладают способностью испускать и поглощать лучистую энергию, но для разных газов эта способность различна. Для одно- и двухатомных газов, в частности для азота (N2), кислорода (О2) и водорода (Нг), она ничтожна практически эти,газы для тепловых лучей прозрачны — диатермичны. Значительной из-лучательной и поглощательной способностью, имеющей практическое значение, обладают лишь многоатомные газы, в частности углекислота (СО2), водяной пар (Н2О), сернистый ангидрид (SO2), аммиак (NH3) и др. Для теплотехнических расчетов наибольший интерес представляют углекислый газ и водяной пар эти газы образуются при горении топлива.  [c.169]



Смотреть страницы где упоминается термин Кислород Тепловые : [c.89]    [c.143]    [c.290]    [c.687]    [c.16]    [c.327]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



КИСЛОРОД Характеристики тепловые

Кислород

Кислород 5—197 — Определение в металлах 2 — 323 — Тепловые

Кислород Тепловые свойства



© 2025 Mash-xxl.info Реклама на сайте