Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород 5—197 — Определение в металлах 2 — 323 — Тепловые

Металлами и сплавами с высоким сопротивлением пользуются, когда хотят электрическую энергию превратить в тепловую. Количество теплоты, выделяемое в проводнике током определенной силы, прямо пропорционально сопротивлению проводника. Сплавами для элементов обычных нагревательных приборов (электропечей, плит, чайников, утюгов, электропаяльников) служат нихром и др. Для нити в лампах накаливания применяют вольфрам, который, не плавясь, выдерживает температуру более 2000°. Однако такую нить можно нагревать лишь в вакууме. Кислород воздуха ее окисляет.  [c.79]


Окисление железа и его примесей сопровождается выделением большого количества тепла. Температура образующихся окислов, определяемая из равенства их теплосодержания тепловому эффекту реакции, очень высока. Так, при окислении чистого железа с начальной температурой 1800° К кислородом, имеющим температуру 300° К, последняя составляет около 4740°К (без учета испарения РеО). Один процент кремния повышает ее примерно на 85° К, марганца — на 10° К, а один процент углерода снижает на 10° К. По сообщению Л. М. Ефимова, эти данные не могут претендовать на большую точность, так как при определении теплосодержания жидких металлов и окислов в большинстве случаев приходится прибегать к экстраполяции зависимостей, относящихся к низким температурам, а иногда и к другому агрегатному состоянию вещества [48]. Высокотемпературный очаг реакции при продувке кислородом находится в среде с высоким значением коэффициента теплопроводности и с большей теплоемкостью. Металлическая ванна интенсивно перемешивается струей кислорода и образующейся окисью углерода. Воспользоваться выводами теории для вычисления величин теплового потока через реакционную поверхность в настоящее время невозможно, ибо отсутствуют необходимые для расчетов сведения.  [c.129]

Киносъемочные камеры 2 — 247, 249 Кирпичева и Гухмана теорема 2—115 Кирпичи кислотоупорные 6 — 381 Кирхгофа законы 2 — 338 Кислород 5—197 — Определение в стали 6 — 54, 55 — Растворимость в металлах 2 — 323 — Тепловые свойства 2—19  [c.429]

Подогревающее пламя служит для нагрева разрезаемого металла до температуры воспламенения. Кислород смешивается с горючим газом в определенном соотношении, обеспечивающем наивысшую тепловую мощность пламени. Подогревающим пламенем производят сначала местный нагрев изделия, а после начала резки — непрерывный нагрев металла в разрезе.  [c.6]

Разработан также метод кислородно-дуговой резки металлов с применением угольных электродов. При этом между угольным электродом, закрепленном в специальном электрододержателе, и разрезаемой деталью возбуждается дуга, под тепловым действием которой металл расплавляется на глубину от 2 до 4 мм. На определенном расстоянии от дуги на расплавленный металл подается струя кислорода, которая обеспечивает энергичное окисление и удаление окисленного и расплавленного металла из полости реза.  [c.314]

Для низкотемпературных тепловых труб проблема удаления газов не столь серьезна, однако для многих низкотемпературных теплоносителей содержание определенных газов нежелательно из соображений интенсификации коррозионных процессов и др. Дегазация металлов осуществляется посредством нагрева в вакууме до температур, близких к рабочим или выше их, но, как правило, не ниже 400° С. В литературе [6—9] рассматриваются различные источники газовых загрязнений конструкционных материалов и влияние газов на свойства материалов. Взаимодействие газов с металлами может носить разнообразный характер. Например, для водорода [13] характерны поверхностная физическая адсорбция, активированная абсорбция и хемосорбция, диффузия, растворение л химическое взаимодействие с образованием химических соединений. Водород — самый подвижный из всех газов, количество его в металле может меняться при каждой технологической операции, которой он подвергается. Основными видами газовых загрязнений таких материалов, как нержавеющая сталь и никель, являются водород, азот, кислород, окислы углерода. Анализ удаляемых газов проводится масс-спектрометром. Температурный режим обезгаживания подбирают исходя из допустимых для материала температур. Опыты показывают, например, что при температуре выше 600° С наблюдается диффузионное сваривание никеля, что не всегда желательно, так как при этом никелевая сетка теряет эластичность. Время и степень удаления газов сильно зависят от уровня температур и глубины вакуума. В каждом конкретном случае о степени дегазации конструкционных материалов можно судить по глубине вакуума, измеренного в тепловой трубе в стационарных условиях. Время удаления таких газов, как водород, окиси углерода и азота с поверхности нержавеющей стали и никеля в вакууме 0,133 На при температуре 450—500° С, например, не превышает 40 мин. Следует отметить трудности обезгаживания алюминия, так как он обычно содержит большое количество газов, а также может содержать водяные пары.  [c.62]


Тепловая обработка материалов так же разнообразна, как разнообразны материалы, подвергающиеся обработке, и процессы, протекающие в них. Тепловая обработка протекает при определенной температуре, обеспечивающей развитие технологического процесса, например, жидкую сталь выпускают из печей с температурой 1550—1650° С, стальные слитки нагревают перед прокаткой до 1250° С, чугун выпускается из вагранки при 1300—1400° С и т. д. Разумеется, чтобы довести металл до указанных температур и при том обеспечить необходимую производительность агрегата, следует в рабочем пространстве развивать гораздо более высокие температуры, например температура факела в мартеновской печи составляет около 2000° С, раскаленного кокса в горне доменной печи 1900° С и т. д. Достижение необходимых температур является первым и основным условием развития технологического процесса. Получить высокие температуры, необходимые для плавки металлов, нагрева их, для обжига огнеупорных материалов и т. п., не так легко, и для этого требуется определенная техника сжигания топлива в том или ином агрегате. Для создания высоких температур в горне доменной печи сжигают кокс определенного качества (кондиционный кокс), а воздух, необходимый для горения, нагревают в регенеративных воздухоподогревателях-кауперах до температуры 1000—1250° С. Часто воздух обогащают кислородом — содержание кислорода увеличивают с 21% по объему (в атмосферном воздухе) до 30—35% и более содержание балластного азота при этом соответственно снижается. В мартеновских печах для достижения высокой температуры воздух, а часто и газообразное топливо, расходуемое на горение, нагревают в регенеративном устройстве до 1200—1400° С теплом отходящих из рабочей камеры газов тем самым реализуется принцип регенерации тепла. Факел в печи должен обладать высокой лучеиспускательной (радиационной) способностью, так как в противном случае трудно или невозможно будет осуществить плавку. Лучеиспускательная способность каждого участка факела (плотность собственного излучения) 8ф определяется его степенью черноты и абсолютной температурой в четвертой степени  [c.9]

Имеются, однако, и возражения против данного метода, когда реагирующим газом являются воздух или другая смесь газов, взаимодействующая с металлом с различной скоростью например, в случае воздуха кислород поглощается значительно скорее азота влага, обычно содержащаяся в воздухе, также изменяет концентрацию реагирующих газов. Даже если время от времени впускать свежий воздух в трубку, атмосфера в установке все равно будет обогащена азотом. Для того чтобы ослабить этот эффект, объем у становки должен быть достаточно велик по сравнению с объемом воздуха, расходуемого на реакцию окисления. Но увеличение объема установки уменьшает чувствительность метода. Кроме того, в газовых смесях проявляется эффект тепловой диффузии, и хотя для с.меси кислорода с азотом эта диффузия незначительна, она все же привносит трудно определимую погреш итсть. Дань [609], пользоваБШИися в своих исследованиях кислородом 95%-пой чистоты, столкнулся с некоторымп трудностями, которые исчезали, когда загрязненный газ заменили чистым кислородом. Тем не менее этот метид оказался весьма полезным, даже когда воздействующей газообразной средой был воздух, из-за простоты методики и возможности при измерениях непрерывно записывать через определенные короткие промежутки времени (до 60 мин) количество поглощаемого кислорода, например, в случае окисления различных сплавов хрома при 1250° С [401] .  [c.242]

В отличие от разделительной резки, при которой кислородная струя направляется перпендикулярно поверхности обрабатываемого металла или углом вперед с углом атаки 90—45°, при поверхностной резке угол атаки меньше и составляет обычно 15-—30°. В результате наклонного направления струи и малой скорости ее истечения в связи с применением относительно небольших давлений кислорода (редко выше 4—5 ати) и больших сечений выходных каналов для кислорода, струя, врезаясь в подготовленный в тепловом отношении металл, деформируется и выбрасывается в сторону той же поверхности, с которой она и была введена. Причем на эту поверхность выбрасывается и сожженный металл в виде расплавленного шлака. Если резак перемешать вперед с определенной для конкретных условий скоростью, то кислородная струя будет сжигать следующие объемы уже подогретого металла. При этом шлак в значительной степени облегчает тепловую подготов.ку металла, подлежащего резке кислородной струей, позволяя применять значительную линейную скорость резки и сжигать в единицу времени большое количество металла поверхностного слоя.  [c.213]


Во второй половине доводки (во время чистого кипения) углерод окисляется только кислородом газовой фазы печи, поступление которого в ванну, как и в остальные периоды плавки, сильно ограниченно, причем это ограничение связано не столько с тепловыми явлениями, сколько с другими кинетическими факторами — парциальным давлением кислорода над ванной, экранирующим действием выделяющейся из ванны восстановительного газа СО, трудностями преодоления межфазного барьера газ—шлак и т. п. Ввиду неизбежности изменения этих факторов не только от плавки к плавке, но и в течение одной и той же плавки, поступление кислорода из газовой фазы изменяется, причем ни общее количество поступающего кислорода, ни его изменение в тот или иной период плавки не поддается ни точному регулированию, ни прямому измерению. Поэтому процесс окисления углерода в период чистого кипения становится малоуправляемым, например нельзя изменять скорость окисления углерода так легко, как при продувке кислородом. В этот период приходится приспосабливаться к тому режиму окисления углерода, который при данных условиях наблюдается. Кроме того, определение скорости окисления углерода и остаточного содержания его в металле по количеству поступающего в ванну кислорода исключается. В связи с этим обычным способом обеспечения требуемого со-.держания углерода в металле в конце плавки является периодическое взятие пробы металла и определение впей содержания углерода (если надо, то и других примесей).  [c.175]


Смотреть страницы где упоминается термин Кислород 5—197 — Определение в металлах 2 — 323 — Тепловые : [c.113]    [c.79]    [c.195]    [c.60]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.0 ]



ПОИСК



Кислород

Кислород 5—197 — Определение

Кислород Тепловые

Кислород в металлах



© 2025 Mash-xxl.info Реклама на сайте