Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные магниевых сплавов

Во избежание загорания плавку магниевых сплавов проводят под слоем универсальных флюсов из хлористых и фтористых солей щелочных и щелочноземельных металлов или в среде защитных газов.  [c.169]

Электродуговая сварка в среде защитного газа (аргона или гелия) применяется при сваривании высоколегированных сталей, алюминиевых, магниевых сплавов, меди, молибдена и других металлов и сплавов. Газовая среда препятствует окислению сварочной ванны, благодаря чему достигается высокое качество шва.  [c.400]


Несмотря на разность потенциалов цинк и кадмий являются равноценными по защитному действию от контактной коррозии даже в случае контакта с магниевыми сплавами. Коррозионная стойкость кадмиевых и цинковых покрытий приведена в табл, 8 [15].  [c.86]

Результаты исследований показывают, что для защиты дуралюмина более целесообразно применение хроматов цинка и стронция, в то время как для стали и магниевого сплава лучшие защитные свойства можно ожидать при использовании смешанного хромата бария-калия.  [c.133]

Детали из магниевых сплавов при хранении и транспортировке надо защищать от коррозии оксидированием или смазкой. Изделия, работающие в атмосферных условиях, следует защищать от коррозии нанесением неорганических пленок н лакокрасочными покрытиями, а изделия, работающие в маслах —только неорганическими пленками. При 250° С лучшие защитные свойства обеспечивают фосфатные или анодные пленки. Места контактов обычно защищают грунтами, клеями и смазками. Стальные болты, шпильки и шайбы цинкуют или кадмируют. При клепке изделий из магниевых сплавов надо применять заклепки из сплава АЛГ-5 или, как исключение, из других алюминиевых сплавов, анодированных в серной кислоте с наполнением анодной пленки.  [c.130]

Недостатками магниевых сплавов является слабая коррозионная стойкость, худшие литейные свойства по сравнению с алюминиевыми сплавами, а также необходимость пользоваться защитными флюсами при плавлении и специальными формовочными смесями. Низкий модуль упругости является в ряде случаев недостатком магниевых сплавов, так как требует усиления сечений для создания надлежащей жёсткости конструкций.  [c.157]

Как на специальный случай химического взаимодействия металла и формы, укажем на литьё магниевых сплавов, при котором окисление отливки происходит не только за счёт кислорода воздуха, но и за счёт разложения магнием воды, содержащейся в форме. Защита металла от горения в этом случае производится введением в состав формовочных смесей серы, борной кислоты или сложных присадок, содержащих преимущественно соединения бора и фтора. Сера создаёт защитный газовый слой между металлом и формой, борная кислота позволяет получить инертную плёнку на отливке, а сложные присадки оказывают комбинированное действие, сочетая обе эти формы защиты магния.  [c.75]


Термообработка (гомогенизация) магниевых сплавов производится в вакуумных печах или в печах с защитной атмосферой (азот, пары серы, SO2).  [c.712]

При электрохимической коррозии материал разрушается на большую глубину. Такой коррозии могут подвергаться дюралюминиевые тяги управления самолетом. Особенно быстро развивается коррозия магниевых сплавов. Это объясняется тем, что на магниевых сплавах не образуется защитной окисной пленки.  [c.85]

СОСТАВЫ ЗАЩИТНЫХ ПРИСАДОК ПРИ ЛИТЬЕ МАГНИЕВЫХ СПЛАВОВ  [c.49]

Назначение защитных присадок — предотвращать возгорание или окисление жидких магниевых сплавов в процессе заливки и при соприкосновении со стенками форм и стержней.  [c.49]

Магниевые сплавы. Основное преимущество магниевых сплавов по сравнению с остальными промышленными металлами — небольшая плотность (1700... 1800 кг/м ). Все магниевые сплавы имеют сравнительно высокую прочность (а = 200...400 МПа, 5 = 6...20%), хорошо поглощают вибрации. Однако из-за пониженного (4,3 10" МПа) модуля упругости пригодны лишь для мало нагруженных деталей. Магниевые сплавы обладают низкой коррозионной стойкостью, особенно в контакте с другими металлами. Недостатком также являются трудности литья и обработки давлением. Магниевые сплавы удовлетворительно свариваются дуговой сваркой в защитной среде инертных газов и хорошо обрабатываются резанием.  [c.219]

При изготовлении отливок из алюминиевых и магниевых сплавов в состав формовочных и стержневых смесей вводят борную кислоту, фтористую присадку или присадку ВМ, которую вводят в виде водного раствора или порошка, состоящую из 58—62% мочевины, 13—17% борной кислоты и 15—19 % нефелинового коагулянта. Вводимые присадки препятствуют окислению и самовозгоранию этих сплавов за счет образования защитной атмосферы.  [c.258]

Для плавки магниевых сплавов применяют печи со стальными сварными или литыми тиглями и крышками специальной конструкции. В печи с такой крышкой можно вести плавку в нейтральной защитной среде.  [c.287]

Магниевые сплавы при температуре плавки поглощают водород (до 30 см каждые 100 г). Для предотвращения взаимодействия магния с печными газами плавку ведут под флюсами или в О)еде защитных газов.  [c.304]

При литье алюминиево-магниевых и магниевых сплавов в состав смесей в качестве защитной присадки вводят 10 % серного колчедана.  [c.380]

С учетом склонности магниевых сплавов к окислению при повышенных температурах к печам для высокотемпературного нагрева предъявляются следующие требования максимальные перепады температур по зонам печи не должны превышать 5 °С, печи должны быть оборудованы экранами, чтобы не допускать прямого нагрева отливок (путем лучеиспускания), и устройствами, позволяющими применять защитную атмосферу в рабочем пространстве (т. е. печи должны обладать герметичностью и не иметь подсоса воздуха).  [c.461]

Магниевые отливки, защитные свойства оксидной пленки которых значительно ниже, чем оксидной пленки алюминиевых сплавов, подвергаются химической очистке, в результате чего на их поверхности создаются хроматные пленки. Вследствие малой продолжительности оксидирования магниевых сплавов получение равномерной хроматной пленки возможно только при условии хорошо подготовленных поверхностей. Поэтому отливки из магниевых сплавов особенно тщательно очищают, обезжиривают и подготавливают по специальной технологии (табл. 26). Порядок выполнения операций по очистке и подготовке поверхности отливок следующий обезжиривание, промывка в горячей, а затем холодной воде травление кипячение в содовом растворе промывка в теплой воде обработка в растворе хромового ангидрида промывка в теплой воде оксидирование промывка в холодной, а затем горячей воде сушка.  [c.465]

Марки магниевых сплавов, их составы и свойства приведены в табл. 6.3. Магниевые сплавы легко обрабатываются резанием и хорошо свариваются в Защитных средах. Их общИе недостатки низкая коррозионная стойкость, малые модули упругости, склонность к газо-насыщению и воспламенению. Добавки бериллия уменьшают склон-ность-к окислению. Все сплавы делятся на две группы деформируемые (МА) и литейные (МЛ).  [c.108]


Плавка магниевых сплавов имеет свои особенности, связанные со склонностью их к самовозгоранию при температурах, близких к температуре плавления. Поэтому вести плавку магниевых сплавов на воздухе невозможно, её производят лишь в нейтральной бескислородной атмосфере или под слоем флюса на основе фторидов и хлоридов щелочных металлов в тигельных электрических печах и индукционных печах. Для плавки титановых сплавов применяют специальные тигельные печи плавку и заливку их производят в защитной атмосфере (большей частью в среде аргона). Освоено промышленное производство отливок из титановых сплавов для нужд авиационной промышленности. В этом случае для плавки используют электронно-лучевые вакуумные электропечи мощностью от 40 до 500 кВт.  [c.285]

Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие скорости резания и небольшой расход энергии способствуют снижению стоимости обработки резанием деталей из магниевых сплавов по сравнению с другими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Дуговую сварку рекомендуется проводить в защитной среде из инертных газов. Прочность сварных швов деформируемых сплавов составляет 90 % от прочности основного металла.  [c.378]

Защитный эффект. Если к корродирующему в земле трубопроводу присоединить электрод, изготовленный из магниевого сплава, то наступит катодная поляризация трубопровода и уменьшится скорость его коррозии.  [c.50]

Сплавы магния МЛ4, M.II5 и др. (буква Л указывает на то, что сплавы. яитейпые) используют для получения отливок. Сваркой устраняют дефекты литья. Эти сплавы имеют повышенную склонность к образованию в швах горячих треш,ин, пор и усадочных рых-лот. Сплавы на основе магния активно окисляются на воздухе. Пленка собственных окислов магния на поверхности металла рыхлая и непрочная. Поэтому поверхность магниевых сплавов искусственно защищают пленкой из солей хромовой кислоты. По указанной причине перед сваркой с кромок и прилегающей поверхности основного металла (па ширину до 30 мм) травлением или механическим путем тщательно удаляют защитную пленку, окислы и другпе загрязнения. После сварки на поверхность сварного соедипопня вновь наносят защитную пленку.  [c.350]

Область применения редкоземельных металлов. Редкоземельные металлы относятся к числу дефицитных. Кроме производства магнитов они незаменимы и в ряде других производств. Окислы самария и гадолиния служат поглотителями тепловых нейтронов в ядерных реакторах. Многие редкоземельные металлы применяют в черной металлургии при производстве сталей и сплавов, а в цветной металлургии — как присадки к алюминиевым и магниевым сплавам для повышения их жаропрочности. Лантан, самарий, цезий и европий используют при производстве люминофоров. Ферроцерий и цериевый мишметалл (мишметалл, обогащенный церием) применяют в трассирующих снарядах. Европий, тербий и гадолиний используюГ в электронике, в производстве Люминофоров для цветных кинескопов н для защитных экранов рентгеновских установок.  [c.82]

Цирконий в компактном состоянии — металл серебристо-белого цвета, похожий на сталь. Порошок в зависимости от чистоты и дисперсности имеет цвет от черного до серого. Применяют в электровакуумной технике, в атомных реакторах и т. д., а также в качестве основы припоя для пайки титана и его сплавов, защитных покрытий, для повышения теплостойкости магниевых сплавов и т. д. По условиям производства различают магниетермический (восстановлением циркония магнием из четыреххлористого циркония), йодидный (термической диссоциацией тетрайодида в вакууме) и др. Состав магниетермического и йодидного циркония приведен в табл. 62,  [c.106]

Первый недостаток преодолевается нанесением защитных оксидных покрытий (травление в хромпике), второй — рациональным конструированием литниковых систем и самих отливок. От пользования флюсами и специальными формовочными смесями отказываться кецедесообразно, так как найденные нейтрализаторы способности магния к загоранию заметно ухудшают Д[эугие свойства магниевых сплавов.  [c.157]

Электродуговая не-плавяшимся электродом в защитной среде (аргона) ) Нержавеющая сталь, алюминий и его сплавы, магниевые сплавы <4 Стык, тавр, отбортовка электроза клепка Любое, кроме потолочного  [c.222]

Сильно снижает эффективность контроля наличие оксидов металлов и некоторых видов красок, неудаленных с поверхности. Поэтому контроль деталей из алюминия рекомендуется производить до анодной обработки, из нержавеющих сталей — до пассивации, из магниевых сплавов — до защитной обработки.  [c.563]

Псевдосплавы Ti-Mg предназначены для для изготовления деталей узлов трения. Взаимодействие в системе Ti-Mg характеризуется образованием весьма ограниченных твердых растворов. При температуре 924К растворимость титана в магнии составляет 0,0025%, а при 1048К - 0,011% Предельная концентрация магния в титане составляет -1,5% Промежуточные соединения в системе отсутствуют. Смачивание титановой подложки жидким магнием хорошее, при температурах выше ЮООК краевой угол близок к 0°. Пропитка пористого титана магниевым сплавом приводит к существенному повышению прочности. Магний повышает работоспособность титаномагниевых псевдосплавов в узлах трения, выполняя функции смазки. В процессе трения на поверхности псевдосплавов формируется защитная пленка из магниевой составляющей, снижающая работу трения и предохраняющая от износа.  [c.127]


Для предотвращения загорания магниевого сплава в литейной форме в состав формовочных смесей вводят защитные присадки. Чтобы предотвратить загорание магния при заливке форм, струю расплавленного металла припыливают порошком серы. Образующийся при ее горении сернистый газ предотвращает загорание.  [c.208]

На первом этапе сваривают тугоплавкий слой ВТ 1-0 без присадочной проволоки на весу с полным проплавлением. Затем осуществляют автоматическую сварку наружного слоя АМгб + АД1 с увеличенным вылетом вольфрамового электрода на таких соотношениях параметров режима, которые обеспечивают натекание алюминия на активированную дугой поверхность титана, т.е. обеспечивают алитирование сплава ВТ1-0. На завершающем (третьем) этапе производят автоматическую аргонодуговую сварку слоя магниевого сплава МА2-1. Повышенная склонность магниевых сплавов к окислению требует увеличения расхода защитного газа и некоторого увеличения скорости сварки. Указанная последовательность сварки полуфабрикатов многослойного материала обеспечивает минимальную деформацию стыка, исключает возникновение трещин в слое магниевого сплава. Толщина образовавшихся интерметаллидных фаз типа TiAb не превышает 10 мкм и является критической. Возникающие в зоне сварки интерметаллидные соединения не снижают работоспособности и плотности металла соединения, что подтверждается металлографическими исследованиями сварных соединений.  [c.514]

Цирконий в компактном состоянии—металл серебристо-белого цвета, похожий на сталь. Применяют цирконий в электронно-вакуумной технике, атомных реакторах, как основу припоя для пайки титановых сплавоэ для защитных покрытий и повышения теплостойкости магниевых сплавов.  [c.149]

Плавку магниевых сплавов ведут в среде защитных газов или под слоем флюса. Состав флюса выбирается в зависимости от марки сплава, но обычно это смесь солей (Mg lj, КС1, ВаОз, aFej, a l2), иногда с добавкой MgO.  [c.254]

В 60—70-е годы широкое распространение получили ингиби-)ованные консервационные масла (К-17 НГ-203 А, Б и В Н1Г-204У НГ-208), масла с присадками — ингибиторами коррозии (АКОР-1, КП), специальные масла и жидкости (НГ-210, НГ-217У, НГ 213), новые типы ингибированных защитных смазок (ЗЭС, ВНИИСТ, М3, ВНИИНП-267 и др.) [10—20]. Применение этих продуктов дало большой экономический эффект прежде всего за счет снижения прямых потерь от коррозии и уменьшения косвенных потерь, связанных с сокращением затрат на консервацию и расконсервацию техники. Гарантийные сроки защиты техники были повышены с 2—6 мес до 3—8 лет в зависимости от вида изделия и условий его хранения и эксплуатации [10—19]. В настоящее время эти продукты являются основой разработанных комплексных систем защиты изделий общего машиностроения, мелких, средних и крупных металлоизделий, полуфабрикатов из алюминиевых и магниевых сплавов, сельскохозяйственной техники, межоперационной защиты на заводах и т. п. и вошли в комплексы соответствующих стандартов Единой системы защиты от коррозии и старения (например, ГОСТ 9.014—78, ГОСТ 7751—79, ГОСТ 9028—80, ГОСТ 9011—79, ГОСТ 9.016—80 и др.).  [c.14]

Такой подход к прогнозу защитных свойств нефтепродуктов, в том числе пине, может дополнять и углублять систему моделирования и оптимизации функциональных свойств, но не может заменить принципов этой системы, основанной на механизме действия,защитных продуктов. В соответствии с этой системой число методов и показателей, характеризующих защитные свойства пине, соответственно 7 и 9 (см. табл. 9). Причем методы 29 и 30 характеризуют защитные свойства пленок ПИНС в условиях повышенной влажности и температуры (ДФС ), методы 31, 32 и 33 — в условиях диоксида серы и морской воды (ДФСн), а методы 34 и 35 — защитные свойства в условиях соляного тумана (ДФС15). Лабораторные испытания защитных свойств масел, смазок и ПИНС проводят согласно ГОСТ 9.054—80 на образцах выбранных металлов сталь — Ст. 10, Ст. 3, Ст. 45, Ст. ЗОХГСА и др. медь —М-1, М-2, МО алюминиевые сплавы — АК-6, Д-1, Д-16, Д-19 и др. чугун магниевые сплавы —МЛ-5, МЛ-10, МЛ-11, МЛ-19, МА-1, МА-2, МА-5 и т. п. Для испытаний используют пластинки размером 50Х Х50Х4 мм, а также специальные детали, сборки, подшипники.  [c.102]

Основное назначение ПИНС группы 3 — консервация топливной системы самолетов и вертолетов (без расконсервации), наружных поверхностей авиационных двигателей после полета, запасных частей, точных и особо точных изделий, замков легко--вых автомобилей, насосов, компрессоров, приборов и т. п. Перспективно использование ингибированных масел для защиты от коррозии тонкого листа сельскохозяйственной техники алюминиевых и магниевых сплавов, дополнительной защиты термостойких органосиликатных покрытий [129, 133]. Как правило, защитные пленки ПИНС-РК отличаются от пленок рабоче-кон-сервационных и консервационных масел несколько большим уровнем адгезионно-когезионных сил (примерно, в два-три раза, т. е. 2—5 Па) и более высоким уровнем защитных свойств. Это объясняется тем, что в состав жидкой основы ПИНС вводят загущающие присадки — 0,1—5,0% (масс.), а общее содержание  [c.180]

Кроме нитробензоатов аминов весьма эффективными соединениями для защиты черных и цветных металлов являются синтезированные нами производные низкомолекулярных аминов, которые выпускаются под маркой ИФХАН. Отличительной чертой их является способность наряду с другими металлами защищать и магниевые сплавы, которые до сих пор не удавалось защитить с помощью летучих ингибиторов. Другое их преимущество заключается в более высоком давлении паров ( 0,1 мм рт. ст.), что делает перспективным применение их для защиты крупногабаритных сложных изделий с разветвленной системой застойных мест, щелей, зазоров, а также оснащенных большим числом приборов. О защитных свойствах ингибиторов типа ИФХАН можно судить по данным, представленным в табл. 10,2. Ингибиторы типа ИФХАН могут применяться в виде ингибитированной бумаги с внешним чехлом, а также в виде пористого адсорбента, пропитанного ингибитором ( линасиль ). Ими можно также насыщать воздух, который в дальнейшем просасывается через изделия с целью осаждения на поверхности пленки ингибитора.  [c.328]

Хотя нержавеющие стали, алюминиевые и магниевые сплавы, пассивное состояние которых в значительной степени зависит от свойств защитных пленок, таят всегда в себе потенциальную опасность щелевой коррозии из-за ограниченного доступа кислорода в щель, их способность сопротивляться щелевой коррозии неодинакова. Это можно видеть на примере нержавеющих сталей, испытанных нами в 0,5-п. Na l (табл. 46).  [c.272]

Катодная защита обычно связана с защитой черных металлов, так как из них изготавливается подавляющая часть объектов, работающих под землей и при погружении в воду, например трубопроводы, свайные основания, пирсы, эстакады, суда и др. В качестве материала для расходуемых анодов-протекторов во всемг мире широко применяется магний. Обычно он используется в виде сплава с содержанием 6% алюминия, 3% цинка и 0,2% марганца эти добавки предотвращают образование пленок, которые снижают скорость растворения металла. Выход защитного тока всегда меньше 100%, так как магний корродирует и на нем выделяется водород. Применяется также алюминий, легированный 5% цинка, но разность потенциалов с железом для сплава значительно меньше, чем для магниевого сплава. Она близка к разности потенциалов для металлического цинка, который также применяется для защиты при условии, что путем соответствующего легирования на анодах предотвращается пленкообразование, связанное с обычным для цинка загрязнением примесями железа. Выбор материала для анодов — сложная задача. В почвах или других средах низкой проводимости необходима большая разность потенциалов, посколь-  [c.130]


Магний и его сплавы обладают наибольшей анодностью по отношению к большинству обычных конструкционных материалоЕ . В разбавленных водных растворах солей анодность магния примерно на 1,6 s более таковой насыщенного каломельного электрода магниевые сплавы обладают потенциалами, всего на 0,1 — 0,2 в менее анодных. При катодной защите стали магниевыми протекторами действующая разность потенциалов составляет 0.7—0,9 в в зависимости от состава агрессивной среды и поляризации под действием защитного тока.  [c.112]


Смотреть страницы где упоминается термин Защитные магниевых сплавов : [c.351]    [c.402]    [c.892]    [c.451]    [c.46]    [c.93]    [c.30]    [c.307]    [c.273]   
Машиностроение Энциклопедический справочник Раздел 3 Том 6 (1948) -- [ c.195 ]



ПОИСК



Защитно-декоративные свойства гальванических и химических покрытий на магниевых сплавах

Защитные свойства алюминиевых покрытий на магниевых сплавах

Составы натирочных стержневых паст —. 3.2. Склеивающие составы для литейных стержней — . 3.3. Составы защитных присадок при лнтье магниевых сплавов

Сплавы магниевые



© 2025 Mash-xxl.info Реклама на сайте