Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Акустооптический эффект

Некоторые материалы, обладающие акустооптическим эффектом [228]  [c.84]

ПРИМЕР АКУСТООПТИЧЕСКИЙ ЭФФЕКТ В ВОДЕ  [c.347]

ПРИМЕР АКУСТООПТИЧЕСКИЙ ЭФФЕКТ В ГЕРМАНИИ  [c.353]

АКУСТООПТИЧЕСКИЕ ЭФФЕКТЫ И МАТЕРИАЛЫ  [c.221]

Рассмотрим теперь распространение плоской монохроматической световой волны в среде, в которой возбуждена звуковая волна и показатель преломления является периодически промодулированным. Как было показано в разд. 9.1 на конкретных примерах, звуковая волна вызывает изменение показателя преломления среды. При этом среда становится периодической с периодом, равным длине звуковой волны. Это периодическое возмущение изменяется как в пространстве, так и во времени. Если звук представляет собой бегущую волну, то периодическое возмущение перемещается со скоростью звука (ее типичное значение порядка нескольких тысяч метров в секунду). Поскольку скорость звука на пять порядков меньше скорости света (с = 3 - 10 м/с), периодическое возмущение, вызванное звуковой волной, можно считать стационарным. Задача при этом сводится к задаче о распространении электромагнитного излучения в периодической среде, рассмотренной нами в гл. 6. Для иллюстрации акустооптического взаимодействия рассмотрим в качестве примера распространение светового пучка в воде. Благодаря фотоупругому эффекту звуковая волна приводит к изменению показателя преломления. Пусть ось г совпадает с направлением распространения звуковой волны, а плоскость yz параллельна плоскости падения. Если световой пучок линейно поляризован в направлении х (ТЕ-мода), то, как мы показали в разд. 9.1.1 на конкретном примере, показатель преломления для этой моды записывается в виде  [c.354]


Изменение оптического рассеяния при электрическом возмущении Вращение плоскости поляризации с помощью магнитооптических эффектов Бегущие изменения фазы при акустооптическом взаимодействии (эффекты Дебая—Сирса и Брэгга)  [c.434]

В качестве оптических затворов могут применяться различные системы. Очень быстрые затворы с электронным управлением могут быть реализованы, например, с помощью электро-оптических и акустооптических модуляторов, принцип действия которых обсуждается в п. 4.3.1 (более подробно см., например, [4]). Затвор может быть реализован и чисто механическим способом с помощью вращающихся зеркал или призм. В этом случае при обычных длинах резонатора частота вращения должна составлять несколько сотен герц. Наряду с модуляцией добротности с тем же эффектом может быть использована модуляция усиления. Последний способ особенно пригоден для полупроводниковых лазеров. Вследствие модуляции тока инжекции созданное электрическим способом усиление претерпевает при этом быстрые временные изменения (см. разд. 7.4).  [c.90]

Экспериментально этот эффект наблюдался в работе [30]. Кривые для интенсивностей постоянной и переменной составляющих света, прошедшего через слой жидкого кристалла и два скрещенных НИКОЛЯ, от амплитуды смещений пластины, полученные в этой работе, приведены на рис. 13.9. В отсутствие возбуждения и при очень малых колебаниях фотоприемник на выходе системы регистрировал слабую высокочастотную составляющую, связанную с шумами лазерного излучения. При превышении амплитудой смещений I некоторого значения (на частоте 296 Гц п=1.2 мкм) в прошедшем свете наблюдалась составляющая с удвоенной частотой модуляции, величина которой возрастала с ростом I. По достижении максимума спектральный состав переменной составляющей прошедшего света менялся, что можно было наблюдать по искажению профилей осциллограмм. Для постоянной составляющей наблюдалась во многом аналогичная картина. Таким образом, зависимости переменной (на двойной частоте) и постоянной составляющих света, прошедшего через ячейку, при достаточно больших оказываются существенно нелинейными и характеризуются резкими максимумами. Последующие исследования [31] показали, что наличие максимумов постоянной составляющей и составляющей с двойной частотой объясняется перекачкой энергии прошедшего света в гармоники с более высокими номерами. Этот факт, по-видимому, может представлять интерес с точки зрения создания нелинейных акустооптических устройств на жидких кристаллах.  [c.353]


Одна область, имеющая существенное прикладное значение, затронута здесь лишь поверхностно — это модуляция света с помощью акустооптического или электрооптического эффекта. Работ, посвященных этому вопросу, достаточно для написания отдельной книги поэтому мы предпочитаем оставить систематическое изложение этого вопроса более компетентному автору.  [c.14]

Акустооптические материалы. Акустооптич. эффект имеет место во всех  [c.39]

Существует много веществ, оптические свойства которых зависят как от направления распространения, так и от поляризации световых волн. К оптически анизотропным материалам относятся кристаллы, например кальцит, кварц и KDP, а также жидкие кристаллы. Эти материалы характеризуются многими необычными оптическими свойствами, такими, как двойное лучепреломление, оптическое вращение плоскости поляризации, поляризационные эффекты, коническая рефракция, электрооптические и акустооптические эффекты. Анизотропные кристаллы используются во многих оптических устройствах, например в призменных поляризаторах, поляризационных пластинах и в двулучепреломляющих фильтрах. Анизотропные нелинейные вещества используются также для достижения фазового синхронизма при генерации второй гармоники. Таким образом, очевидно, сколь важным для практического применения этих свойств является четкое представление о процессе распространения света в анизотропных средах. Данная глава целиком посвящена изучению распространения электромагнитного излучения в этих средах.  [c.78]

В предыдущем разделе мы рассматривали некоторые общие свойства мод диэлектрического волновода и, в частности, получили решения для локализованных мод, распространяющихся в волноводном слое. Волноводные моды могут быть возбуждены и распространяться вдоль оси (г) диэлектрического волновода независимо друг от друга при условии, что диэлектрическая проницаемость е(х, у) = е п (х, у) сохраняется постоянной вдоль оси z. В случае когда имеется возмущение диэлектрической проницаемости Де(г, v, z), обусловленное несочершенствами волновода, искривлением оси, наличием гофра на поверхности и т. п., собственные моды оказываются связанными между собой. Иными словами, если на входе волновода возбуждается чистая мода, то некоторая часть ее мощности может перейти в другие моды. Существует большое число экспериментов и устройств, в которых намеренно создают взаимодействие между такими модами [2—5, 7]. Два типичных примера относятся к преобразованию мод ТЕ ТМ электрооптическими методами [4, 5], с помощью акустооптического эффекта [2] или взаимодействия прямой и обратной мод из-за наличия гофра на одной из границ волновода. В данном разделе для описания такого взаимодействия мод мы используем теорию связанных мод, развитую в гл. 6. Некоторые из важных результатов можно кратко описать следующим образом. Возмущение диэлектрической постоянной представляется небольшим возмущающим членом Ле(х, у, г). Тогда тензор диэлектрической проницаемости как функция пространственных координат запишется в виде  [c.459]

Брэгговская дифракция поверхностной световой волны активно используется в интегральных модуляторах и дефлекторах на основе акустооптического эффекта. Отклонение света происходит на фазовой решетке, создаваемой акустическими волнами пол действием переменного напряжения, которое прикладывается к иьезопреобразователю. Варьируя частоту акустических волн в диапазоне выполнения условий дифракции, можно изменять угол отклонения.  [c.312]

Акустооптика изучает взаимодействие оптических волн с акустическими в различных веществах. Возможность такого взаимодействия впервые предсказал Бриллюэн в 1922 г., а затем ее экспериментально проверили в 1932 г. Дебай и Сиарс в США и Люка и Бигар во Франции. При взаимодействии света со звуковыми волнами наиболее интересное явление представляет собой дифракция света на акустических возмущениях среды. При распространении звука в среде возникает соответствующее поле напряжений. Эти напряжения приводят к изменению показателя преломления. Такое явление называется фотоупругим эффектом. Поле напряжений для плоской акустической волны является периодической функцией координат. Поскольку показатель преломления среды претерпевает периодическое возмущение, возникает явление брэгговской связи, как показано в гл. 6. Акустооптическое взаимодействие является удобным способом анализа звуковых полей в твердых телах и управления лазерным излучением. Модуляция света при акустооптическом взаимодействии находит многочисленные применения, в том числе в модуляторах света, дефлекторах, устройствах обработки сигналов, перестраиваемых фильтрах и анализаторах спектра. Некоторые из этих устройств мы рассмотрим в следующей главе.  [c.343]


Харрис с сотр. [14, 15] предложили спектральный фильтр с электронной настройкой на основе коллинеарного акустооптического взаимодействия в оптически анизотропных средах и продемонстрировали его работу. В разд. 9.5.2 мы кратко рассмотрели одну из конфигураций взаимодействия с участием сдвиговой волны. В другом эксперименте, выполненном этими авторами, оптические волны и продольная акустическая волна распространялись вдоль оси X кристалла LiNbOj. На рис. 10.12, а показано схематически устройство этого фильтра. Падающий пучок может быть поляризован либо вдоль оси у, либо вдоль оси Z. Благодаря фотоупругому эффекту с постоянной /7,4 (= (см. задачу 10.4) возникает брэгговская дифракция в ортогональную поляризацию. Перестройка по спектру от длины волны 7000 до 5500 А была получена изменением акустической частоты от 750 до 1050 МГц (см. рис. 10.12, б). Для кристалла LiNbOj длиной 1,8 см с указанной на рис. 10.12, а ориентацией двулучепреломление равно Ап = 0,09. Из (10.3.9) следует, что ширина полосы пропускания АХ,/2 на длине волны X = 6250 А составляет около 2 А. Необходимо заметить, что в спектре пропускания не присутствуют вторичные полосы или полосы высших порядков, поскольку акустическая волна является синусоидальной. Интенсивность звука 1 , необходимая для 100%-ного преобразования мощности (т. е. для того, чтобы ,2 - = 7г/2), так же, как и в (10.1.9), определяется выражением (см. задачу 10.4)  [c.423]

Акустооптическая модуляция добротности. В основе действия акустооптического затвора лежит явление дифракции света на ультразвуковой волне. Предположим, что в некоторой среде (твердой или жидкой) распространяется плоская ультразвуковая юлна, возбуждаемая пьезопреобразователем при этом в среде возникают механические напряжения, связанные с локальными сжатиями и разрежениями. Через фотоупругий эффект эти напряжения воздействуют на показатель преломления среды. В результате в среде образуются различающиеся показателем преломления периодические слои (пространственный период равен длине звуковой волны Л), перемещающиеся по среде со скоростью звука. При прохождении световой волны через такую среду будет иметь место дифракция на пространственной периодической структуре, связанной с периодически изменяющимся показателем преломления.  [c.330]

Акустооптические методы в физических исследованиях. Акустооптич. методы дают возможность изучать локальные характеристики звуковых полей и свойства материалов, в к-рых имеет место взаимодействие света со звуком. По угловым зависимостям дифрагированного света определяются диаграмма направленности и спектральный состав акустич. излучения. Анализ эффективности дифракции в различных точках образца позволяет восстановить картину пространственного распределения интенсивности звука. Наконец, на основе акусто-оптпч. эффектов осуществляется визуализация звуковых полей. С помощью брэгговской дифракции удаётся получить информацию о спектральном, угловом и пространственном распределении акустич. фононов в длинноволновой области фононного спектра.  [c.33]


Смотреть страницы где упоминается термин Акустооптический эффект : [c.389]    [c.609]    [c.609]    [c.435]    [c.21]    [c.30]    [c.486]    [c.174]   
Оптические волны в кристаллах (1987) -- [ c.343 ]



ПОИСК



Аббе—Портера эксперимент акустооптический эффект

Акустооптические эффекты и материалы

Вода акустооптический эффект



© 2025 Mash-xxl.info Реклама на сайте