Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ньютона) о действии и противодействии

Внутренние силы подчиняются закону Ньютона о действии и противодействии (см. стр. 161). Следовательно,  [c.381]

Третий закон Ньютона (о действии и противодействии).  [c.136]

Третий закон Ньютона (о действии и противодействии). Действие всегда равно и противоположно противодействию, или взаимные действия двух тел друг на друга равны по величине и направлены в противоположные стороны.  [c.82]

В современном понимании механика — это наука о механическом движении и взаимодействии материальных тел (см., например, [62]). Из всех взаимодействий в механике, основанной на аксиоматике Ньютона, выделено механическое взаимодействие посредством только сил, подчинённых третьему закону Ньютона (равенства действия и противодействия). Более того, дополнительно полагается, что силы действия и противодействия всегда возникают одновременно и представляют собой силы совершенно одинаковой природы [125]. Такие ограничения на способы передачи движения не позволяют с достаточной ясностью и общностью изучать механическое движение, если для взаимодействия не представлен (или вообще отсутствует) перевод на язык силовой механики. Этот перевод требует, чтобы в описании взаимодействия всегда имелись две силы с указанием реальных материальных источников силового действия и противодействия (обычно это тела, обладающие конечной, бесконечно большой или пренебрежимо малой массой).  [c.34]


Сила. Понятие о силе возникло из нашего силового ощущения. При соприкосновении с каким-либо телом мы испытываем чувство давления. Путем обобщения мы приходим к закону взаимодействия, согласно которому сила понимается как взаимодействие между двумя телами в том смысле, что два тела действуют друг на друга равными, но противоположно направленными силами (3-й закон Ньютона — закон действия и противодействия).  [c.227]

IV. Аксиома о равенстве сил действия и противодействия — один из основных законов классической механики, сформулированных Ньютоном всякой силе действия есть равная, но  [c.11]

Иногда считают, что сила тяжести, по третьему закону Ньютона, уравновешивается силой реакции опоры. Это неверно, так как в третьем законе Ньютона идет речь о силах, приложенных к различным телам, и их нельзя поэтому рассматривать как уравновешивающие друг друга. Сила тяжести и сила реакции опоры приложены к данному телу и только поэтому могут уравновешивать друг друга. Но они не находятся в отношении действия и противодействия .  [c.95]

Закон сил является следствием третьего закона Ньютона о равенстве действия и противодействия.  [c.52]

Завершая развитие идей Галилея и его последователей, великий английский ученый Исаак Ньютон (1643—1727) установил основные законы классической механики ). Ньютон ввел понятие о массе и дал точную формулировку второму закону, служащему основанием всей динамики. Ему же полностью принадлежит открытие двух важнейших законов механики закона равенства действия и противодействия и закона всемирного тяготения.  [c.14]

Прежде всего напомним, что любые силы представляют собою взаимодействие между массами. Если, например, масса тпх притягивает к себе другую массу тг с силой Р, то с такой же силой масса шг притягивает к себе массу т. Следовательно, обе силы направлены прямо противоположно друг другу (закон Ньютона о равенстве действия и противодействия). В системе масс, каким-нибудь образом выделенной среди других масс, следует различать два вида сил внутренние силы, действующие между массами, принадлежащими к системе, и внешние силы, действующие между каждой массой системы и массами, находящимися вне системы. Во всей совокупности сил, действующих в рассматриваемой системе масс, внутренние силы входят всегда попарно в виде равных и прямо противоположных сил, а внешние силы — всегда в одиночку. При суммировании (векторном или координатном) всех сил внутренние силы всегда попарно уничтожаются, и остаются только внешние силы.  [c.12]


Отметим, что равенство действия и противодействия двух материальных точек (третий закон Ньютона), о котором уже говорилось в начале курса статики, является общим законом всей механики и справедливо не только в задачах статики, но и в задачах динамики.  [c.12]

Таким образом, закон Ньютона о равенстве сил действия и противодействия получен здесь как следствие принципа равновесия Даламбера и второго закона Ньютона. При этом использовалась смесь двух разных систем аксиом из динамики Даламбера и силовой механики  [c.36]

Основными понятиями классической механики являются понятия о пространстве и времени, о силе и массе, об инерциальной системе отсчета. Основными законами являются закон инерции Галилея — Ньютона (первый закон Ньютона), уравнение движения относительно инерциальной системы отсчета (второй закон Ньютона), закон равенства действия и противодействия (третий закон Ньютона). Эти понятия и законы были сформулированы И. Ньютоном в его гениальном трактате Математические начала натуральной философии (1687).  [c.7]

На рассматриваемый объем жидкости, кроме того, будет действовать сила со стороны тела, ибо если поток будет на тело оказывать давление, выражаемое результирующей силой F, проекции которой суть X, Y, то, по третьему закону Ньютона о равенстве действия и противодействия, тело будет действовать на рассматриваемую жидкость с силой —X, —У. Эти силы дадут импульсы (в единицу времени)  [c.120]

В первом и втором законах говорится о теле, считающемся материальной точкой в первом законе оно изолировано от всех остальных тел, а во втором — рассматривается действие на него другого тела без анализа последствий этого действия для другого тела. В третьем законе Ньютона рассматриваются два тела, моделируемые материальными точками. Точки на расстоянии взаимодействуют между собой, т. е. действуют друг на друга с некоторыми силами. Третий закон Ньютона, или закон равенства действия и противодействия, устанавливает характер взаимодействия материальных точек. Удобна и следующая формулировка третьего закона, в которой использованы введенные ранее понятия материальной точки и силы силы, с которыми две материальные точки действуют друг на друга, расположены по прямой, соединяющей точки, равны по модулю и противоположны по направлению.  [c.74]

Чтобы, как мне думается, правильно ответить на этот вопрос, следует принять во внимание следующее. В инженерных расчетах по разным причинам (из-за удобства, упрощения и т. д.) применяются условности, иногда расчетные величины, которые не носят материально-физического содержания и с помощью их нельзя истолковать сущность физического явления (процесса). Такого рода ситуация часто встречается при исследовании динамики механизмов и машин. Так, например, известно, что сила есть мера воздействия одного материального тела на другое и обратно (закон Ньютона действие равно противодействию), поэтому понятие приведенная сила , будучи могучим инструментом расчетной техники, однако, не имеет никакого физического смысла. Аналогичное можно сказать и о силе инерции и силе трения . В кинематике господствует расчетная величина (понятие) — скорость (тела, звена). Если словом сила кратко выражается действие одного материального тела на другое, т. е. взаимодействие материй (их взаимное отношение), то скорость — это типичный продукт отвлеченного человеческого мышления. Это просто один из способов охарактеризовать движение тела во времени в некоторой системе координат, придуманной человеком, под влиянием окружающей этого тела материи (других тел).  [c.22]

Следует обратить внимание на то, что закон сохранения импульса системы явился прямым следствием третьего закона Ньютона. Так как действие равно противодействию в любой момент времени в процессе взаимодействия частей системы (в этом состоит особенность ньютоновских сил ), то сумма импульсов частей системы также будет иметь одно и то же значение во все моменты времени. Однако допущение о ньютоновском характере сил взаимодействия не всегда выполняется на практике, так как не всегда можно считать, что действия тел друг на друга передаются мгновенно. В действительности воздействия передаются не мгновенно, но с конечной скоростью, не превышающей скорость света. Так, что в некоторый момент времени силы взаимодействия fi2 и fa, могут быть и не равны друг другу. Но тогда не будет постоянной сумма импульсов системы. Однако можно показать, что сумма импульсов до взаимодействия тел будет в точности равна сумме импульсов тел после взаимодействия даже в том случае, когда в процессе самого взаимодействия суммарный импульс не сохраняется. Таким образом, закон сохранения импульса для начальных и конечных стадий взаимодействия является самостоятельным законом природы, а не следствием законов Ньютона.  [c.116]


Схематически цистерны Фрама — это два сообщающихся сосуда... Такие сообщающиеся сосуды ведут себя наподобие маятника — здесь говорят о гидравлическом маятнике Ньютона, и можно подобрать условия так, что волнение, действующее на корабль, раскачивает этот водяной маятник, который, оказывая/обратное влияние на корабль, сильно противодействует волне и тем значительно уменьшает качку  [c.115]

Рассмотрим возникновение реактивной силы, исходя из законов механики. Если пар между лопатками движется без изменения давления, то его скорость относительно лопаток, т. е. относительная скорость, остается постоянной, и в этом случае, как было объяснено ранее, лопатки находятся только под действием центробежной силы, возникающей вследствие изменения направления движения пара. Если же при движении между лопатками происходит, кроме того, и падение давления, то это вызывает увеличение скорости пара относительно лопаток, т. е. увеличение относительной скорости движения пара. Наличие увеличения скорости, т. е. наличие ускорения, говорит о том, что на движущуюся струю пара действует (согласно второму закону Ньютона) с и л а, направленная в сторону движения. Согласно же третьему закону Ньютона этой силе противодействует равная ей и противоположно направленная сила, приложенная к лопаткам. Эта последняя сила и называется реактивной силой. Таким образом, в этом случае на лопатки действуют в одну и ту же сторону две силы центробежная и реактивная.  [c.203]

В приведённую выше схему (в несколько более сложном варианте для физико-математических моделей, когда речь идёт как о физических свойствах, так и об их математическом описании) укладывается и развитие отдельных понятий. Уточнение смысла основных применяемых понятий дано в заметках первой главы работы. Дано обобщение понятия материальной точки (заметка 1), рассмотрены понятия скорости и ускорения (заметка 2), обсуждается соотношение виртуальных перемещений и вариаций, используемых в дифференциальных и интегральных принципах (заметка 3). Закон Ньютона о действии и противодействии получен как следствие принципа равновесия Даламбера и второго закона Ньютона. Прослеживается логическая цепь, соединяющая принцип равновесия Даламбера с уравнениями даламберова равновесия , использующими понятие о силе инерции. Предложено описание взаимодействия в форме интегрального равенства (заметка 4). Обсуждаются аналоги теоремы об изменении кинетической энергии для реономных систем и место функции Гамильтона в уравнении энергии  [c.12]

Закон о действии и противодействии заканчивает собой тот ряд определений или условий, с помощью которых вводится в механику понятие о силе. Мы придерживались изложения Ньютона, причём основным понятием служило у нас понятие о материи или массе, и из него, с помощью донятий о времени и пространстве, мы получили, как производное понятие, силу. Можно было бы итти обратным путём и взять, за основное понятие силу, тогда понятие о массе можно было бы ввести с помощью ряда условий, подобных выше приведённым,  [c.137]

Механика Ньютона покоится на трех основных законах Ньютона законе инерции, законе связи между силой, приложенной к материальной точке, и сообщаемым ею ускорением, и законе действия и противодействия. Последовательное изложение этих законов п их следствий в случае любого двиэ1Г.ения материальной точки или системы материальных точек будет дано в начале второго тома при изложении основ динамики. В статике учащийся встретится с несколько ограниченными их применениями. Для кинематики имеют значения лишь общие ньютоновские представления о пространстве и времепн.  [c.9]

Вывод теоремы об изменении количества движения системы, или, как се кратко называют, теоремы количества движения, основан на идее исключения внутренних сил из днф([)ереициаль-ных уравнений движения системы материальных точек (1). Пользуясь третьим законом Ньютона о равенстве действия и противодействия, можно утверждать, что главный вектор внутренних сил V равен нулю  [c.107]

Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]

В 80-х годах XVTI в., упомянув о трудах Рена, Валлиса, Гюйгенса и Мариотта, Ньютон посвятил несколько страниц своих Начал произведенным им самим экспериментам. Однако главное, что внес Ньютон в изучение удара, это не столько новые эксперименты, сколько та связь, которую он установил между явлениями удара и формулированным им законом равенства действия и противодействия.  [c.150]

Соотпоп1епие (1.2) можно трактовать как непосредственное выражение третьего закона Ньютона (принцип равенства действия и противодействия). Но опо может быть также пепосред-ственно выведено из теоремы о количестве движения и из принципа папряжепий Коп1и. Совокупность векторов напряжений сгу(А) для всех направлений I/ определяет напряженное состояние в точке А.  [c.17]


Какие неизвестные исключаются при составлении уравнений количеств движения и живых сил. Легко видеть, что при С0С1авлении уравнения количеств движения исключаются все внутренние силы. Это есть следствие третьего закона Ньютона, т. е. равенства между действием и противодействием. Внутренние силы в системе будуг всегда встречаться по две равные и противоположные. Когда же составляем импульс силы, то берем проокгщю силы на координатную ось и умножаем се на элемент времени эги вырал<ения для двух равных, но про1ивоположных сил будут равны, но с обратными знаками. Следовательно, эти два импульса взаимно сократятся, и все внутренние силы исчезнут из уравнения количеств движения. Такое исключение значительного числа неизвестных, притом таких, которые трудно определить, указывает на особое значение закона количеств движения и на важность его для приложений.  [c.180]

В самом деле, — говорит Ньютон в пояснение к этому за- кону, — если что-либо давит на что-нибудь другое или тянет его, то оно само этим последним давится или тянется. Если кто на- жимает пальцем на камень, то и палец его также нажимается камнем . Если какое-нибудь тело, ударившись о другое тело, изменяет его количество движения на сколько-нибудь, то и оно претерпит от второго тела в своем собственном количестве движения то же самое изменение, но обратно направленное, ибо давления этих тел друг на друга во время контакта равны. Первый и второй законы Ньютона были формулированы по отношению к материальной точке. Третий закон Ньютона является основным для механической системы точек. Нужно только отметить, что действие и противодействие не образуют системы сил, эквивалентной нулю (т. е. уравновешенной), так как дей ствие приложено к одному телу, а противодействие — к другому. По этой причине как действие, так и противодействие могут вызвать движение тел, к которым они приложены. Рассмотрим, например, камень, находящийся под действием силы притяже ния Земли сила противодействия в данном случае будет при ложена к Земле. Действие вызывает движение камня, противодействие-движение Земли. Так как масса камня иичтожнн по сравнению с массой Земли, то смещения Земли не могут быть измерены современными приборами перемещения же камня обнаруживаются без специальных инструментов, простым глазом.  [c.163]

Переход от сил, приложенных к жидкости, к силам, приложенным к обтекаемому телу, осуществляется на основании третьего зако1на Ньютона о равенстве действия и противодействия.  [c.214]

Поверхностная сила Т есть та сила, с которой среда, расположенная со стороны положительной нормали +п от элемента поверхности с единичной нормалью п, действует в сторону отрицательной нормали —п. По аналогии с третьим законом Ньютона о равеестве действия и противодействия имеем  [c.24]

Так, по Ломоносову, сущность вещей заключается в материи и движении (все еще только механическом), как и у Декарта. Но движение в геле не может возникнуть самопроизвольно, если это тело не будет понуледе-но к двил<ению другим телом , как у Ньютона. И в . есте с тем Ломоносов считает, что тела могут взаимодействовать друг с другом только при получении импульса, то есть движения, от чистого притяжения в телах не может происходить ни какого-либо действия, ни противодействия . Здесь он расходится с ньютонианцами и в споре о природе сил тяготения стоит ближе к Декарту и Гюйгенсу. Он категорически отрицает невесомые материи и возможность дальнодействия.  [c.100]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

В последуюш их двух изданиях своего труда Ньютон переработал раздел, посвяш енный истечению воды из отверстий. При этом он опустил всякие упоминания о силе реакции вытекаюш ей струи воды, ограничившись одним замечанием Сила, которая может породить все движение низвергаюш ейся воды, равна весу цилиндрического столба воды, основание которого есть отверстие ЕР и высота 2С1 или 2СК. Ведь извергаюш аяся вода за то время, пока она сравнивается с этим столбом, может приобрести, падая под действием своего веса с высоты С1, ту скорость, с которой она вытекает . Здесь ЕР — отверстие, через которое происходит истечение жидкости, С1 = СК — напор воды над отверстием с учетом скоростного потока, поступаюш его сверху для поддержания постоянного уровня воды в сосуде. Объяснение движуш ей силы вытекаюш ей струи, равносильное данному Ньютоном в 1687 г., получило широкое распространение в XVIII веке во всей Европе. Ссылки на Ньютона не встречаются, но используются его аргументы сила давления жидкости или газов действует одинаково во все стороны, и движуш ая сила возникает за счет отсутствия противодействия со стороны отверстия, через которое извергается веш ество.  [c.21]

Возможность расширения пара в лопаточном пространстве рабочего колеса реактивной ступени достигается тем, что профиль лопаточных каналов аналогичен профилю сопла, т. е. ишрина лопаточного канала по его протяженности не остается постоянной, как в активной ступени, и лопатка рабочего колеса реактивной ступени уже не имеет симметричного профиля (рис. 11.19). Естественно, что падение давления пара от Р1 до р2 при движении между лопатками обусловливает увеличение его относительной скорости и Шз > ьг, - Увеличение скорости, т. е. наличие ускорения в соответствии со вторым законом Ньютона, свидетельствует о том, что на движущуюся струю пара действует сила, направленная в сторону перемещения лопаток, а по третьему закону Ньютона этой силе противодействует равная ей и противоположно направленная сила, приложенная непосредственно к лопаткам. Эта последняя сила и называется реактивной. Таким образом, на лопатки действуют в одну и ту же сторону две силы — реактивная и центробежная, возникающая вследствие изменения направления двил<ения пара. В активной ступени на лопатки рабочего колеса действуют только центробежные силы.  [c.173]


Смотреть страницы где упоминается термин Ньютона) о действии и противодействии : [c.182]    [c.649]    [c.9]    [c.48]    [c.15]    [c.118]    [c.20]    [c.128]    [c.504]    [c.506]    [c.441]   
Теоретическая механика (1970) -- [ c.0 ]



ПОИСК



Действие и противодействие

Закон равенства действия и противодействия (третий закон Ньютона)

Ньютон

Противодействие

Третий закон Ньютона (о действии и противодействии)



© 2025 Mash-xxl.info Реклама на сайте