Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристические величины состояния движения

Из равенства (14) и из формул (13),, (13)2, (13)з следует, что живая сила твердого тела в общем случае выражается в виде квадратичной формы от характеристических величин состояния движения гг, V, W, р, q, г.  [c.231]

СКОСТИ как это имеет место, в частности, в случае неизменяемой плоской фигуры, движущейся в своей плоскости. Если прямо приложенные импульсы имеют результирующую, параллельную плоскости л, а результирующий момент относительно какой-нибудь точки этой плоскости перпендикулярен к ней, то основные уравнения импульсивного движения свободного твердого тела (17), (18) покажут, что и состояние движения после удара будет также параллельным тс. Если примем эту плоскость за плоскость координат г— О, то три скалярные характеристические величины движения после удара (проекции скорости Dq центра тяжести на оси х, у vi угловая скорость) будут однозначно определены уравнением (17), рассматриваемым как векторное уравнение в плоскости тг, и третьим из уравнений (18 ), т. е. двумя уравнениями  [c.475]


ГО движения. Характеристическими величинами являются критические скорости (w мин— минимальная, при которой начинается псевдоожижение, w —максимальная, при которой частицы переходят во взвешенное состояние и таким образом уходят в неплотную фазу), сопротивление кипящего слоя и время пребывания в нем частиц.  [c.369]

На поверхности X конуса Маха сопрягаются два решения волнового уравнения, соответствующие состоянию покоя, ф= о, и состоянию возмущенного движения, ф = ср (т , у, 2, t). Подобные поверхности сопряжения решений с различными аналитическими свойствами называются характеристическими поверхностями уравнений с частными производными. Характеристическая поверхность — конус Маха является в общем случае поверхностью разрыва возмущений в рамках рассматриваемой теории эта поверхность будет поверхностью, на которой разрывы скорости, давления и других величин невелики. В пределе такие поверхности соответствуют слабым разрывам, на которых искомые функции непрерывны, но их производные по координатам вообще терпят разрыв. Очевидно, что скорость распространения поверхности характеристического конуса по неподвижной среде, нормальная к его поверхности, точно равна скорости звука.  [c.220]

Поставлена и решена задача о безударном холодном сжатии одномерных (плоского, цилиндрического и сферического) слоев баротропного газа, требующем для достижения заданной степени сжатия минимальной внешней энергии. Начальное состояние газа предполагается однородным. В плоском случае получено точное решение задачи (построены законы оптимального управления движением поршня) с использованием принципа максимума Л.С. Понтрягина, в цилиндрическом и сферическом — приближенное с использованием метода характеристических рядов. В плоском случае найдена величина энергетического выигрыша по сравнению с традиционным автомодельным способом сжатия, оказавшаяся достаточно заметной и зависящей от вида уравнения состояния. Приведены результаты численных расчетов для изученного более подробно цилиндрического случая, которые проведены на основе построенного аналитически закона оптимального управления движением поршня с одной точкой переключения управления. Часть результатов в кратком изложении содержится в [Г.  [c.403]

На достаточно большом расстоянии от источника взрывной волны давление в возмущенной области лишь незначительно отличается от атмосферного давления ро. Для отыскания закона убывания амплитуды ударной волны при i оо можно ограничиться приближенным исследованием уравнений движения. Теоретическое описание волн малой амплитуды (т. е. звуковых волн), как правило, основывается на линейной системе уравнений, которая получается после исключения из уравнений движения членов, содержащих произведения малых вариаций величин, характеризующих возмущенное движение среды. В линейной теории скорость распространения возмущений, независимо от амплитуды, равна невозмущенной скорости звука Со. Ударный фронт также распространяется со скоростью Со, поскольку разрыв можно в этом случае рассматривать просто как предел непрерывного распределения. Поверхность ударного фронта совпадает с характеристической поверхностью линейной системы уравнений. Следовательно, в линейном приближении амплитуда ударной волны не заг висит от течения позади нее и определяется состоянием среды перед ударным фронтом и геометрическими свойствами рассматриваемой задачи.  [c.280]


Живля СИЛА ТВЕРДОГО ТЕЛА. Обозначим в случае движения твердого тела S, как обычно, через Фц и to скорость какой-либо точки О, неизменно связанной с телом S, и угловую скорость движения вокруг оси, проходящей через эту точку обозначим, далее, через и, V, w, р, q, Г—характеристические величины состояния движения, т. е. проекции векторов и w на оси некоторой системы Oxyz, неизменно связанной с твердым телом.  [c.229]

Трактат об устойчивости заданного состояния движения... Э. Рауса появился в 1877 г. В нем изложено в общем виде составление дифференциальных уравнений возмущенного движения, т. е. уравнений для отклонений координат системы от их значений, соответствующих заданному состоянию движения. Эти отклонения, в трактовке Рауса, вызываются мгновенными возмущениями (по сути это возмущения начальных данных). В первую очередь, как орудие исследования возмущенного движения, рассматривается метод линеаризации (теория малых колебаний). Раус переоткрывает результаты Вейерштрасса и Сомова и дает критерий для суждения о знаках вещественных частей корней характеристического уравнения. Определение устойчивости у Рауса остается в достаточной мере расплывчатым. Оно связано с понятием малости возмущений, а малы те величины, для которых возможно найти такое число, численно большее, чем каждая из них, и такое, что квадратом его можно пренебречь . Как выражается Раус, это число есть стан-  [c.121]

ЧАСТОТА (биений циклическая — частота негармонических колебаний, получающихся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами волны — частота гармоническая (синусоидальная), соответствующая упругой волне колебаний частиц среды вращения — величина, равная отношению числа оборотов, совершенных телом, ко времени вращения линейная— частота гармонических колебаний обращения—частота периодического движения точки по замкнутой траектории несущая — частота модулируемой волны резонансная — частота колебаний, при которой наступает явление резонанса собственная—частота гармонических колебаний системы, не подвергающейся действию внешних сил характеристическая—частота колебаний определенной группы атомов в молекулах, соответствующая определенной химической связи щжлическая — частота гармонических колебаний, умноженная на два пи циклотронная — частота обращения заряженных частиц в постоянном магнитном поле в плоскости, перпендикулярной к вектору напряженности этого поля) ЧИСЛО [Авогадро — число молекул (или атомов) в одном моле вещества (6,022136 10 моль ) волновое — отношение циклической частоты к скорости волны вращательное квантовое определяет энергию ротатора квантовое (главное—целое число, определяющее энергетические уровни водородного атома в стационарном состоянии магнитное— целое число, определяющее проекцию вектора орбитального момента импульса электрона на направление внешнего магнитного поля орбитальное — целое число, определяющее орбитальный момент импульса электрона в атоме спиновое определяет спиновой момент импульса электрона в атоме) координационное — число ближайших к данному атому соседних атомов в кристаллической решетке]  [c.296]

Прежде чем выводить эти выражения, отметим важную черту, общую для всех внутренних степеней свободы. Расстояние между соседними энергетическими уровншш, соответствующими различным динамическим процессам, зависит, конечно, от упомянутых выше характеристических параметров. Если температура такова, что величина Ад Г много меньше расстояний между энергетическими уровнями, тепловое движение не может индуцировать переходы в возбужденные состояния. Поэтому молекула остается в основном состоянии, соответствующей вклад в а имеет постоянную величину, а вклад в су равен нулю. Говорят, что при таких температурах соответствующая степень свободы заморожена ). С другой стороны, при температурах, когда квТ значительно больше характеристического расстояния между уровнями, соответствующую энергию можно рассматривать как непрерывно изменяющуюся величину, и система ведет себя как классическая теплоемкость тогда равна IJ b, т. е. значению, соответствзгю-щему равнораспределению знергии. Такую ситуацию удобно опиг сывать с помощью представления о характеристической температуре i, которая вводится для каждой внутренней степени сво боды. Фактически она равна расстоянию между уровнями, поделенному на к в. Вклад некоторой степени свободы в теплоемкость схематически показан на фиг. 5.3.1, которая иллюстрирует приведенные выше соображения. Полная теплоемкость является су-  [c.178]



Смотреть страницы где упоминается термин Характеристические величины состояния движения : [c.475]    [c.15]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.229 ]



ПОИСК



Г характеристическое

Состояние движения



© 2025 Mash-xxl.info Реклама на сайте