Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Области применения циркония и его сплавов

Области применения циркония и его сплавов  [c.448]

Области применения сварки в защитных газах охватывают широкий круг материалов и изделий (узлы летательных аппаратов, элементы атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоколегированных сталей.  [c.198]


Области применения керамики из двуокиси циркония определяются высокой ее стойкостью к действию различных металлов, сплавов, стали и стекла. Свойство этой керамики плавиться и размягчаться под нагрузкой при высоких температурах позволяет использовать ее в высокотемпературных печах. Но необходимым условием в этом случае является повышение ее термической стойкости.  [c.276]

К числу новых конструкционных металлов относятся титан, цирконий, бериллий и ряд тугоплавких элементов. Интенсивно изучать эти материалы начали сравнительно недавно — 10—15 лет назад, по уже в настоящее время имеются значительные успехи. Многие сплавы, разработанные вначале для специфических областей применения, находят все большее и большее применение в общем машиностроении.  [c.366]

Благодаря высоким антикоррозионным свойствам цирконий может применяться для изготовления деталей химической аппаратуры, медицинского инструмента и в других областях техники. Однако вряд ли производство циркония так быстро достигло бы современного уровня, если бы он не обладал егце одним специфическим свойством — малым поперечным сечением поглощения тепловых нейтронов. Это его свойство в сочетании с высокой коррозионной стойкостью высокой пластичностью, хорошей обрабатываемостью и достаточными механическими свойствами обусловило применение циркония и его сплавов в качестве основного конструкционного материала атомных реакторов.  [c.449]

Малое поперечное сечение поглощения тепловых нейтронов в сочетании с высокой коррозионной стойкостью и пластичностью, хорошей обрабатываемостью и достаточными м-еханическими свойствами обусловило применение циркония и Го сплавов в качестве одного из основных конструкционных материалов атомных реакторов. Цирконий можно использовать для изготовления деталей химической аппаратуры, медицинского инструмента и в других областях техники.  [c.304]

В табл. 10 приведены механические характеристики и области применения припоев. Для пайки жаропрочных сталей и сплавов используют припои на основе никеля, марганца и палладия с добавками других элементов (хрома. Кобальта, циркония  [c.123]

Протекание диффузионного потока внедренных атомов при их химической диффузии по междоузлиям сплава замещения должно оказывать влияние на диффузионные процессы, происходящие на узлах решетки, а эти процессы в свою очередь влияют на диффузию в подрешетке междоузлий. Теория взаимного влияния диффузионных процессов на узлах и на междоузлиях, развитая в рамках общего феноменологического формализма, основанного на применении уравнений (23,32), была развита в [20] и привела к интересной возможности перераспределения атомов на узлах решетки при химической диффузии внедренных атомов. Такой эффект был обнаружен экспериментально при изучении взаимодействия сплавов цирконий — ниобий с азотом. В образцах сплавов при поглощении азота наблюдалось перераспределение атомов циркония и ниобия между центральной и приповерхностной областями, причем  [c.319]


На рис. У-16 показана зависимость скорости окисления различных бинарных сплавов циркония от количества легирующих примесей. Прямая, параллельная оси абсцисс, приводимая на этом рисунке, характеризует скорость окисления циркония в углекислом газе при температуре 500° С. Область значений, находящихся под этой прямой, охватывает повышенную коррозионную стойкость металла к окислению, которая может быть достигнута легированием. Несмотря на известные успехи в создании циркониевых сплавов, применение  [c.333]

Бурное развитие новых областей техники открыло перед тугоплавкими металлами и цирконием еще более широкие перспективы их применения. Так, эти металлы и их сплавы находят все большее применение в качестве конструкционных материалов для атомной и ракетной техники, производства реактивных сверхзвуковых самолетов. Цирконий и его сплавы в основном применяют в качестве конструкционного материала для ядерных реакторов, успешно заменившим широко используемый для этого малоэкономичный алюминий.  [c.174]

Применение изделий из ZrO - Анионный характер проводимости твердых растворов 2гОг позволяет использовать его в качестве твердых электролитов для работы при высоких температурах. Одна из областей применения — это топливные элементы, в которых температура развивается до 1000—1200°С. Керамика из ZrOg служит токосъемным элементом в таких высокотемпературных химических источниках тока. Твердые электролиты из ZrO используются и в других источниках тока, в частности он перспективен для применения в МГД-генераторах. В стране разработаны я применяются высокотемпературные нагреватели из ZrOg для разогрева в печах до 2200"С. На воздухе изделия из диоксида циркония применяют при высокотемпературных плавках ряда металлов и сплавов. Практически полное отсутствие смачиваемости ZrO сталью и низкая теплопроводность привели к успешному использованию его для футеровки сталеразливочных ковшей и различных огнеупорных деталей в процессе непрерывной разливки стали. В некоторых случаях диоксид циркония применяют для нанесения защитных обмазок на корундовый или высокоглиноземистый огнеупор. Диоксид циркония широко используют с целью изготовления тиглей для плавки платины, титана, родия,  [c.127]

Наиболее огнеупорная, а также наименее химически активная окись — окись тория. Она пригодна для применения в тиглях, предназначенных для сплавов с очень высокой температурой плавления. Тигли, набитые окисью тория, могут быть применены до 2700°. Окись магния, окись бериллия и окись циркония тоже представляют собой материалы с высокими огнеупорными свойствами, но они более химически активны и поэтому менее пригодны, чем окись тория. Окись алюминия имеет максимальную температуру службы до 1900—1950°, что является пределом, до которого можно применять оптический пирометр с исчезающей нитью, смотровой трубой из корундиза и экраном как источником излучения абсолютно черного тела. Современное производство прямых непористых смотровых труб из окиси тория значительно расширяет область применения этого метода. При более высоких температурах возможно измерение лучеиспускания непосредственно поверхности металла только оптическим пирометром или фотоэлектрическим элементом. В этом случае поверхность металла не удовлетворяет условиям излучения абсолютно черного тела, и поэтому такой метод можно применять только в том случае, если известны данные об эмиссионной способности металла и если для градуировки имеются в распоряжении металшы с известной точкой плавления и эмиссионной способностью, близкой к исследуемому сплаву. Однако точность такого метода не очень высока. Подробности мы рассматриваем ниже при описании метода Мюллера. Вольфрам-ирридиевые, вольфрам-мо-либденовые и различные другие термопары могут быть применены для измерения высоких температур однако эти термопары нельзя считать удовлетворительными ввиду трудности получения повторимых результатов (см. ниже).  [c.179]

В табл. 10 приведены механические характеристики и области применения некоторых припоев. Для пайки жаропрочных сталей и сплавов используют прнпои. ча основе никеля, марганца и палладия с добавками других элементов (хрома, кобальта, циркония и др.), а также твердые и газообразные флюсы.  [c.123]


К первому относится самостоятельное использование покрытия для защиты металлов и сплавов от высокотемпературно газовой коррозии (табл. 91). Вторая область применения — в составе сложных керметных покрытий, включающих алюминиды никеля как составную часть. При этом они служат для лучшего про-плавления покрытий и увеличения прочности сцепления с основой. Так, известны случаи успешного применения добавок алюминида никеля к порошкам сплавов типа колмоной и получения из этих смесей плазменных покрытий высокого качества [365]. В работе [15, с. 168] отмечена перспективность применения комбинации алюминида никеля с окисью алюминия и циркония для получения покрытий с высокими жаростойкостью, износостойкостью и сопротивлением термическому удару. Третья область приме-  [c.334]

Разделы 1 и 2 содержат данные о свойствах и областях применения металлических и неметаллических материалов для нагревателей. Приведена обобщенная методика определения срока службы никельхромовых и железохромоалюминиевых сплавов на воздухе и в углеродсодержащей атмосфере. Приведены характеристики и результаты испытаний нагревателей из карбида кремния, дисилицида молибдена, хромита лантана и диоксида циркония.  [c.3]

Интересные возможности открываются для применения магния в области реакторостроения. Магний, как и алюминий, бериллий и цирконий, обладает небольшим сечением поглощения тепловых нейтронов. Магниевый сплав с 1% алюминия и 0,05% бериллия применяют как материал для оболочек тепловыделяющих элементов в реакторах с газовым (углекислый газ) теплоносителем. В колдерхольском реакторе магний находится в соприкосновении с углекислым газом (теплоносителем), который поступает в реактор при температуре 140° С и давлении 7 ат, а покидает его с температурой 330° С [121], По сравнению с отлитым и мундштучнопрес-сованным магнием предпочитается материал, изготовленный способом порошковой металлургии [122].  [c.553]

Преимущества сварки в защитных газах обусловили области ее применения. Аргонодуговую сварку применяют при производстве конструкций из. легких (алюминия и магния) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и сплавов, а также конструкщюнных легированных и высоколегированных сталей. В последнем случае широко используют смеси аргона марки В с 3—5%0о и углекислого газа. Дуга в смесях газов обладает лучшими технологическими свойствами по сравнению с чистым аргоном повышается стабильность горения дуги, улучшается формирование шва и т. и. Для легких сплавов применяют аргон марки Б, а для тугоплавких — аргон высокой чистоты марки А.  [c.296]

В последнее время все большее применение получает более чистый молибден, подвергнутый дугово.му вакуумному или электроннолучевому переплаву, а так-ж<. сплавы молибдена. Легирование молибдена некоторыми элементами приводит к его упрочнению и повышению пластичности. Особенно эффективное влияние на молибден, так же как и на вольфрам, оказывает рений, который образует с ним широкую область твердых растворов. Рений сушественно упрочняет молибден, в то же время уменьшает его чувствительность к примесям внедрения и хладноломкости, повышает температуру рекристаллизации. Легирование молибдена небольшими количествами титана и циркония (до 1%) приводит к значительному его упрочнению при комнатной н повышенной температурах. Эти легирующие элементы образуют с углеродом, всегда присутствующим в молибдене, дисперсные частицы карбидов.  [c.242]


Смотреть страницы где упоминается термин Области применения циркония и его сплавов : [c.5]    [c.128]    [c.151]   
Смотреть главы в:

Новые материалы в технике  -> Области применения циркония и его сплавов



ПОИСК



Области применения циркония

Область применени

Сплавы Области применения

Сплавы Применение

Циркон

Цирконий

Цирконий и сплавы

Цирконий и сплавы циркония

Цирконий применение



© 2025 Mash-xxl.info Реклама на сайте