Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цирконий Механические свойства

На технологические свойства разработанной стали (жидкотеку-чести, усадки, трещиноустойчивости) существенно влияют при модифицировании модификаторы на основе бора и циркония в количестве до 0,1% (см. рис. 134). Влияние титана и иттрия на этот процесс в пределах тех же концентраций незначительно. Механические свойства жаропрочной стали приведены в табл. 104.  [c.387]

Рис. 3,10. Механические свойства сверхчистых циркония и титана при высоких температурах [6] Рис. 3,10. Механические свойства сверхчистых циркония и титана при высоких температурах [6]

Практические применения радиационной химии можно подразделить на оборонительные и наступательные . На первом этапе развития ядерной промышленности в основном велись работы оборонительного плана по радиационно-химической защите материалов в реакторах и вообще в условиях высокой радиоактивности (в частности, в космосе). При сильном облучении металлы становятся склонными к коррозии, хрупкости, смазочные масла портятся, в изоляторах увеличивается электропроводность и т. д. Была проведена большая работа по изысканию материалов, стойких по отношению к облучению.. Так, было найдено, что из металлов в условиях облучения хорошо сохраняют свои антикоррозийные и механические свойства цирконий и его сплавы. Хорошей радиационной стойкостью обладают и некоторые полимерные материалы, например, полистирол, для которого малы выходы как сшивания, так и деструкции (радиационно-стабильные (обычно ароматические, см. п. 3) группы, не только сами устойчивы по отношению к излучению, но могут защищать от разрушения и другие полимерные молекулы, отсасывая от них энергию (так называемая защита типа губки). Применяется также защита типа жертвы . В этом случае защищающие молекулы, например, могут захватывать образующийся в радиационно-химическом процессе атомарный водород, препятствуя последнему реагировать с другими молекулами.  [c.665]

По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях.  [c.48]

Н. Н. Белоусов и др. [4], исследуя влияние малых добавок (до 0,2%) бериллия, циркония, титана и марганца на структуру сплава АЛ8 в слитках (Z)=120 мм, Я/D =1,5), кристаллизация которых происходила под атмосферным и поршневым давлением 200 и 400 МН/м , показали, что, как и для других сплавов, ощутимое улучшение механических свойств наблюдается при поршневом давлении до 200 МН/м . Более высокое давление не приводит к, заметному улучшению свойств сплава. Наряду с прочностными повышаются и пластические свойства. В этом отношении поршневое давление дает максимальный эффект в сплаве АЛ8 без добавок или с добавкой какого-либо одного элемента. Введение в сплав всех указанных добавок дает менее значительный эффект.  [c.123]


Влияние температуры испытания иа механические свойства циркония по данным [1]  [c.88]

Влияние температуры испытания на механические свойства отожженного иодидного циркония по данным [1]  [c.88]

На рис. 35 приведены данные о влиянии азота и кислорода на механические свойства полос циркония толщиной 0,3 мм при комнатной  [c.89]

Рис. 35. Зависимость механических свойств циркония от содержания азота (а) и кислорода (б), а также зависимость Рис. 35. Зависимость механических свойств циркония от содержания азота (а) и кислорода (б), а также зависимость <Tq j корня квадратного из концентрации азота (а ) и кислорода (б )
Внешняя среда оказывает существенное влияние на механические свойства циркония при высоких температурах. Испытания на ползучесть при 1100—1300 С иодидного циркония показывают, что при вакууме 10 3 Па скорость ползучести остается постоянной в течение более 10 ч  [c.89]

Механические свойства циркония  [c.478]

Состав магниетермического и иодидного циркония дан в табл. 39. Механические свойства циркония зависят от технологии получения и механической обработки (табл. 40—46 и фиг. 27—30).  [c.478]

Влияние метода получения и плавки циркония на его механические свойства  [c.479]

Механические свойства проволоки из иодидного циркония  [c.480]

Механические свойства иодидного листового циркония, прокатанного на холоду из прутков  [c.481]

Механические свойства циркония при кратковременном испытании на растяжение при повышенных температурах в различных газовых средах  [c.482]

Механические свойства а-сплавов циркония в отожженном состоянии  [c.488]

Механические свойства сплавов цирконий—алюминий  [c.488]

Механические свойства сплавов цирконий—хром и цирконий—кобальт—хром  [c.489]

Механические свойства сплавов цирконий—молибден, цирконий—молибден—титан, цирконий—молибден—ниобий, цирконий—никель, цирконий—ниобий и тантал при 500°С  [c.489]

Механические свойства сплавов цирконий—ниобий, цирконий-кремний, цирконий—тантал, цирконий—титан и цирконий—ванадий при комнатной температуре  [c.490]

Механические свойства металлов с ГПУ-решеткой определяются отношением кристаллографических параметров с а, а также содержанием примесей и обычно являются средними между характеристиками металлов с ГЦК- и ОЦК-решетками. Например, у титана предел текучести и интенсивность деформационного упрочнения с понижением температуры возрастают, так что отношение пределов прочности и текучести либо сохраняется постоянным, либо даже возрастает при низких температурах. Особенно наглядным можно считать поведение при низких температурах циркония [29], пластичность которого при низких температурах существенно увеличивается (с 12 до 40 %) за счет протекания механического двойникования, стимулирующего работу призматических и пирамидальных систем скольжения [18].  [c.18]

В настояш,ем разделе основное внимание уделяется никелю, цирконию, меди, бериллию, алюминию, магнию, молибдену, ниобию, танталу и вольфраму. Данные по влиянию излучения на механические свойства этих металлов и их сплавов сведены в табл. 5.6—5.13.  [c.253]

Влияние нейтронного облучения на механические свойства циркония и его сплавов  [c.254]

При широком использовании сплавов циркония в ядерных реакторах хорошо известны лишь их кратковременные механические свойства под действием излучения. Сравнительно недавно отмечена важность знания влияния излучения на характеристики ползучести. Некоторые результаты исследований влияния излучения на ползучесть циркониевых сплавов сообщил Фарис [29]. По его данным, скорость ползучести материалов (исключая чистый цирконий) несколько возрастает при облучении нейтронами.  [c.260]

Легирование марганцем и цинком ведет к повышению коррозионной устойчивости сплавов. Механические свойства магния и его сплавов улучшаются при легировании медью, оловом, цирконием, кремнием и церием.  [c.134]


В качестве армирующих элементов слоистых и волокнистых композиционных материалов с металлической матрицей применяются волокна из углерода, бора, карбида кремния, оксида алюминия, высокопрочной стальной проволоки (сетки), бериллиевой, вольфрамовой и других проволок. Для обеспечения химической стойкости в расплаве матрицы и сцепления волокна с матрицей применяют защитные барьерные покрытия на волокнах из карбидов кремния, титана, циркония, гафния, бора, из нитридов и окислов этих и других элементов. При этом получается сложная многокомпонентная система матрица — переходный слой продуктов химического воздействия матрицы с барьерным покрытием — слой волокна. Механические свойства за счет армирования повышаются в 1,5—3 раза (удельные в 2—5 раз) в зависимости от объемной доли и способа введения армирующих волокон.  [c.78]

Механические свойства циркония существенно повышаются нагартовкой это повышение исчезает при отжиге до 100—400 °С. Температура рекристаллизации при нагартовке циркония понижается (с 590 °С при деформации 10% до 450 °С при 80-95%).  [c.326]

Промышленные сплавы циркония циркалой-2 и 3 в отожженном виде имеют следующие механические свойства с = ЬО 1,5 кГ/мм ,  [c.326]

Представлены материалы исследования механических свойств теплоустойчивой Сг—Ni—Мо стали дополнительно легированной добавки малых количеств ванадия, ниобия, титана и циркония.  [c.379]

Для создания защитной атмосферы в установках с натриевым теплоносителем рекомендуются гелий и аргон, содержащие кислород в тысячных долях процента [1,51]. Водород значительно диффундирует через нержавеющую сталь уже при температуре 600° С, и поэтому для создания защитной атмосферы мало пригоден [1,52]. В ряде случаев для очистки расплавленного натрия и защитного газа от кислорода и других примесей (воды, водорода, азота, углерода) рекомендуется контактировать натрий и газ при температуре свыше 500° С с цирконием, титаном [1,52] или сплавом 50% титана и 50% циркония. В последнем случае в системе не образуется твердых частиц. В атмосфере азота происходит азотирование нержавеющей стали в расплавленном натрии при температуре свыще 480° С [1,51], что отражается на механических свойствах материала. Очищать натрий от окислов можно также путем пропускания натрия (при температуре 250° С) через фильтр, изготовленный из аустенитной нержавеющей стали.  [c.46]

Постоянная С изменяется с повышением температуры в соответствии с законом Аррениуса. Для сплава циркалой 2 постоянная С в четыре раза меньше, чем у чистого циркония. Энергия активации реакции окисления циркония равна 29200 кал. При наличии водорода в натрии образуется гидрид натрия. Последний не реагирует с аустенитной нержавеющей сталью, но растворяется в металлическом цирконии. Скорость этой реакции возрастает с повышением температуры. Растворение водорода в цирконии мало влияет на механические свойства последнего.  [c.47]

Цирконий используется в качестве добавок к стали для повышения ее твер дости и вязкости. Сплавы циркония с медью, магнием п алюминием обладают повышенной прочностью и устойчивостью в отношении действия температуры. Двуокись циркония применяется для изготовления плавильных печей, жароустойчивых эмалей, тугоплавкого стекла и керамики. Благодаря высоким механическим свойствам, коррозийной устойчивости и жароустойчивости, а также малому поглощению нейтронов цирконий приобрел особое значение как конструкционный материал для атомных реакторов.  [c.378]

Церий и цирконий, будучи введены в сплавы магния с цинком и марганцем, измельчают зерно и повышают механические свойства, а цирконий еще и сопротивление коррозии. Редко.земсльные металлы и торий увеличивают жаропрочность магниевых сплавов.  [c.338]

Композиционные покрытия никель—двуокись циркония, никель—двуокись церия, медь—окись алюминия получены методом химического восстановления из суспензий, в которых дисперсионной средой являются щелочные растворы химического никелирования или меднения, а дисперсной фазой — один из вышеуказанных окислов. Изучены условия образования и ряд физико-механических свойств покрытий. Показано, что введение окисных добавок в растворы химической металлизации изменяет скорость осаждения покрытий и приводит к сдвигу стационарного потенциала. Лит, — 3 назв., ил. — 2.  [c.258]

Улучшение механических свойств наполненных полимерных материалов благодаря применению силановых аппретов наблюдается при использовании многих минеральных наполнителей (гл. 5). Наиболее эффективно аппретирование двуокиси кремния, окиси алюминия, стекла, карбида кремния и алюминия (табл. 4). Несколько хуже результаты, полученные с тальком, волластонитом, порошком железа, глиной, цирконом и фосфатом кальция. Аппретирование асбестина, асбеста, двуокиси титана и титаната калия малоэффективно обработка силанами карбоната кальция, графита и бора безрезультатна.  [c.196]

Двуокись циркония. Большое количество данных по радиационным нарушениям в ZrOa касается вызванных излучением фазовых превраш е-ний, но есть и некоторые сведения об изменении параметра решетки [17 ], теплопроводности [160] и механических свойств [57]. Берман и др. [17] измеряли уменьшение параметров по всем трем кристаллографическим направлениям после облучения в реакторе потоком быстрых нейтронов до 1,5-10 нейтрон см при 100° С. Результаты показаны в табл. 4.9, где имеются также результаты изменения других свойств.  [c.181]

Цирконий вводят в белый чугун при получении ковкого чугуна (ЛЯ того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым 10Дификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий.  [c.63]


Микролегирование стали Г13Л. Добавка 0,1—0,15% Ti повышает износостойкость стали Г13Л. Аналогично влияет цирконий в количестве 0,1—0,2% [8]. Значительно улучшаются механические свойства стали при добавке азота, резко уменьшающего размер ее зерна. При добавке избыточного количества азота в сталь Г13Л в ее структуре появляются поры и нитриды, ударная вязкость стали резко падает табл, 42).  [c.389]

Сплавы золото — цирконий образуют диаграмму состояния с ограниченной областью твердых растворов. Цирконий значительно повышает твердость золота. В промышленности применяют сплав с 3 % 2г. Ои жет подвергаться старению со значительным повышением механических свойств, обладает незначительной ева-риваемостью и высокой коррозионной стойкостью, не образует игл.  [c.299]

К данной группе относятся сплавы, содержащие в качестве основных добавок кадмий, хром, бериллий и цирконий. Они обладают высокой электропроводностью, теплоп])оводно-стью и высокими механическими свойствами. Из кадмиевых бронз изготовляют троллейные, телеграфные и телефонные провода. Особо важное значение имеют сплавы с хромом, из которых изготовляют контакты для электросварки и прочие детали, от которых наряду с высокими механическими свойствами требуются высокая электропроводность и теплопроводность. Вышеуказанные сплавы, а также сплавы с добавками циркония, кобальта, никеля и др. широко применяются в оборонной промышленности (кабели для взрыва мин и для передач на короткие расстояния), для изготовления электрических контактов, колец коллекторов, плоских и спиральных пружин, лопаток паровых турбин, деталей в авиамоторостроении, цилиндров для тиснения в текстильной промышленности и для изготовления трубок, прутков и прочих деталей в химической промышленности.  [c.124]

Большое влияние на структуру и свойства чугуна оказывает модифицирование. Модифицированным чугуном называют сплавы, соответствующие по химическому составу отбеленному чугуну, но затвердевающие серыми после обработки на желобе вагранки или в ковше графитизирующими добавками (графитом, ферросилицием, силикокальцием, а также комплексными модификаторами, содержащими кремний, алюминий, цирконий, лантан и другие элементы). Модифицированный чугун отличается от обычного серого повышенными механическими свойствами и, главное, более равномерной структурой в тонких и толстых сечениях отливок [3—5],  [c.10]

В связи с тем, что чистый цирконий ввиду отсутствия у него стабильных антикоррозионных и механических свойств для массового производства защитных оболочек непригоден, были исследованы его сплавы с танталом, ниобием, оловом, никелем и железом. Самым подходящим из них для этой цели оказался сплав циркония с концентрацией 1% ниобия. Это объясняется тем, что такой сплав при повышенных температурах обладает более высокими механическими свойствами (предел текучести при температуре 300° С равен 12 /сГ/.м>Р), чем остальные кроме того, производство этого сплава значительно проще, чем многокомпонентных сплавов, в состав которых должны входить олово, железо и никель. Что касается кассет реактора, то они должны работать при перепаде давления около 1,5 ат, а для этого необходимо, чтобы материал, из которого изготовляют кассеты, имел более высокие механические свойства. Таким требованиям отвечает сплав с концентрацией 2,5% ниобия, обладающий хорошей коррозионной стойкостью при температуре 300° С с высокими механическими свойствами. Толщина защитной оболочки для тепловыделяющего элемента из сплава циркония составляет 0,6 мм. Скорость коррозии циркониевых сплавов в воде при температуре 300° С примерно 1,4 мг1м час.  [c.298]

Приведены результаты исследования в вакууме (Ю- —10- мм рт. ст.) при высоких температурах трения кобальта по кобальту, титану, цирконию, вольфраму, а также по окислам магния и алюминия. Характер температурных зависимостей коэффициента трения определяется соотношением механических свойств металлов, от которого зависит направление переноса. При трении по окислам получены сложные зависимости низкотемпературная часть соответствует трению односменных образцов кобальта, вьюокотемпсратурная — одноименных образцов окислов.  [c.151]


Смотреть страницы где упоминается термин Цирконий Механические свойства : [c.74]    [c.75]    [c.268]    [c.234]    [c.9]    [c.111]   
Машиностроение Энциклопедический справочник Раздел 2 Том 3 (1948) -- [ c.312 ]



ПОИСК



Циркон

Цирконий

Циркония Свойства



© 2025 Mash-xxl.info Реклама на сайте