Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие стали химическая стойкость

Коррозионностойкие (нержавеющие) стали обладают стойкостью против электрохимической коррозии (кислотной, щелочной, солевой, атмосферной, почвенной, морской и др.). Жаростойкие (окалиностойкие) стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии, обладают стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550° С. Жаропрочные стали и сплавы обладают достаточной окалиностойкостью и определенное время могут работать в нагруженном состоянии при высоких температурах. Основной характеристикой качества этих сталей и сплавов является химический состав.  [c.270]


Нержавеющие стали должны обладать высокой химической стойкостью электротехнические, в частности трансформаторные, — незначительными потерями энергии на перемагничивание жаропрочные — значительной прочностью при высоких температурах и т. д.  [c.172]

Холодная деформация любой нержавеющей стали обычно оказывает меньшее влияние на стойкость к общей коррозии, если при обработке не достигается температура, достаточная для протекания диффузионных процессов. Фазовые изменения, вызываемые холодной обработкой метастабильных аустенитных сплавов, не сопровождаются существенным изменением коррозионной стойкости . К тому же закаленная аустенитная нержавеющая сталь (с гранецентрированной кубической решеткой), содержащая 18 % Сг и 8 % Ni, имеет примерно такую же коррозионную стойкость, как закаленная ферритная нержавеющая сталь (с объемно-центрированной кубической решеткой), которая содержит такое же количество хрома и никеля, но меньше углерода и азота [11]. Однако, если аналогичный сплав, содержащий смесь аустенита и феррита, кратковременно нагревать при 600 °С, то возникает разница в химическом составе двух фаз и образуются гальванические пары, ускоряющие коррозию. Иными словами, различие в составе, независимо от того, чем оно вызвано, больше влияет на коррозионное поведение, чем структурные изменения в гомогенном сплаве. По-видимому, это можно отнести в целом к металлам и сплавам.  [c.302]

В табл. 2 приведены химический состав и данные, характеризующие относительную стойкость нержавеющих сталей к питтинговой коррозии по питтинговому эквиваленту (PRE), который определяется соотношением (Сг + ЗМо) %.  [c.22]

Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

Стойкость нержавеющих сталей в азотной кислоте определяется не только их Химическим составом, но и металлургическими и технологическими факторами. Для повышения коррозионной стойкости сталей следует стремиться к возможно более низкому содержанию углерода (не более 0,03%, а лучше - 0,02%), кремния (не более 0,40%), фосфора и серы (способствует селективной коррозии). Введение в качестве легирующих элементов стабилизаторов (титана и ниобия) не всегда оправдано, поскольку из- за образования карбидов и карбонитридов, легко растворяющихся под воздействием азотной кислоты, стойкость сталей может резко снижаться. Благоприятно влияют на стойкость сталей в азот-8626 КЗК 45 6 21  [c.21]


Исследована коррозионная стойкость сталей, поверхностно-легированных хромом и хромом с никелем в различных химических средах. В средах минеральных удобрений скорость их коррозии примерно равна скорости коррозии нержавеющей стали и не превы-  [c.205]

Химический состав сплавов, из которых сделаны канаты, приведен в табл. 158, а их коррозионное поведение —в табл. 159. У канатов с номерами 15, 18, 19, 20, 21, 22, 41 (экспозиция в течение 751 сут на глубине 1830 м), 48—53 видимой коррозии не было. Канат номер 15 из нержавеющей стали марки 316, модифицированной добавками кремния и азота, экспонировался в течение 189 сут на глубине 1830 м. Проволочный канат номер 41, сделанный из обычной нержавеющей стали марки 316, не корродировал в течение 751 сут экспозиции на глубине 1830 м. Однако этот же канат был покрыт ржавчиной и подвергся щелевой коррозии (а некоторые из его внутренних проволок были порваны) после 1064 сут экспозиции. Временное сопротивление каната при 1064 сут экспозиции на глубине 1830 м уменьшилось на 41 %. Так как обычная нержавеющая сталь марки 316 также не корродировала в течение первых 751 сут экспозиции, то нельзя утверждать, что добавки кремния и азота в сталь марки 316 улучшают ее коррозионную стойкость. Канаты с номерами 18—21 изготовлены из никелевых сплавов. Канаты с номерами 20 и 21 не корродировали в воде и когда они лежали на донных осадках или были в них погружены. Канат номер 22 был из сплава на основе кобальта, он также не  [c.411]

Канаты № 10—17, 29—34, 41 и 42 были из нержавеющих сталей разного химического состава. Тросы из нержавеющей стали марки 304 диаметром 4,76 мм (№ 10—13 и 29—31) со снятым и неснятым напряжением подвергались щелевой, питтинговой и туннельной коррозии. Многие проволоки, особенно внутренние, вследствие коррозии разрушились. На канатах из нержавеющей стали марки 304 диаметром от 6,35 мм до 9,53 мм (32,33 и 34) наблюдались, при той же длительности экспозиции, лишь пятна ржавчины. Добавки ванадия и азота (канат номер 16) в состав стали марки 304 не улучшали ее коррозионную стойкость.  [c.428]

I — коррозионно-стойкие (нержавеющие) стали и сплавы, обладающие стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.  [c.333]

Г[алам. Технический титан обладает малой плотностью (почти в раза легче, чем сталь), высокими механическими свойствами, теплостойкостью и коррозионной стойкостью в морской, пресной воде и в некоторых кислотах, хорошей свариваемостью в защитной атмосфере обрабатывается аналогично нержавеющим сталям. Титан и его сплавы применяются в авиационной, судостроительной, химической и других отраслях промышленности для изготовления деталей, от которых требуется сочетание прочности с малой плотностью и высокой коррозионной стойкостью.  [c.181]

Высокая кавитационная стойкость нержавеющих сталей определяется их физико-химическим состоянием, обеспечивающим, в частности, образование поверхностной защитной (пассивирующей) пленки и однородность внутреннего строения.  [c.64]

Однако, несмотря на то, что нержавеющие стали в общем обладают высокой кавитационной стойкостью, их сопротивляемость кавитационной эрозии меняется в довольно широких пределах. Это различие объясняется химическим составом стали и способом ее производства и обработки. В табл. 5 приведены данные о кавитационной стойкости некоторых образцов нержавеющих сталей, полученные при испытаниях на магнитострик-ционном вибраторе.  [c.64]

В технике часто встречаются литые изделия. Это обусловлено тем, что некоторые сплавы (например, Fe-Si), имеющие высокую коррозионную стойкость, отличаются повышенной твёрдостью и хрупкостью во многих агрессивных средах и могут применяться только в литом состоянии. Так, усложнение узлов и деталей химического оборудования вызывает необходимость выпуска литья из нержавеющих сталей.  [c.57]

Контроль фазового состава нержавеющей стали, магнитной проницаемости и сопротивления межкристаллит-ной коррозии может производиться двояким образом в образцах, изготовленных из пробы, специально отлитой во время разливки плавки в образцах, изготовленных из проб катаного или кованого металла. При плавочном контроле, как правило, используют первый способ, хотя оп при некачественной отливке пробы может дать ошибочные результаты. В последние годы при стабильной технологии производства справедливо предлагают отменить плавочный контроль и установить определение фазового состава и стойкости против коррозии путем оценки этих свойств на основании результатов химического анализа металла.  [c.279]


Для сокращения расхода на изготовление аппаратуры дефицитных, дорогостоящих конструкционных материалов иногда используют биметалл. Биметалл обычно подбирают с учетом того, что толщина основного металла удовлетворяет прочности корпуса аппарата, а тонкий плакированный защитный слой нержавеющей стали или цветного металла обеспечивает коррозионную стойкость изготовляемого аппарата. Часто используют гуммированное оборудование. Из указанных выше конструкционных материалов отечественная промышленность в широком ассортименте выпускает трубы различного диаметра и листовой прокат. На заводах химического машиностроения хорошо отработана технология изготовления из этих металлов и биметаллов, в том числе из материалов, футерованных пластмассами, сосудов под давлением, в частности ионообменных колонн промышленного назначения.  [c.294]

Никельмолибденовые сплавы характеризуются высоким пределом прочности при повышенных температурах. Теплопроводность этих сплавов примерно такая же, как и нержавеющих сталей. Химическая стойкость сплавов в ряде кислот чрезвычайно высока (табл. 30), прячем сплав ЭН46 стоек в кипящей соляной кислоте, в коте рой нестойки все нержавеющие и кислотостойкие стали и чугуны. В азотной кислоте никель-мс либденовые сплавы указанного состава быстро разрушаются.  [c.150]

Дальнейшее увеличение химической стойкости стали в агрессивных средах, а также сообщение нержавеющей стали повышенной стойкости в некоторых новых средах может быть достигнуто путем иовышенпя содержания хрома до 28—30%. Однако увеличение хрома до  [c.145]

Специальные легированные стали — это высоколегированные нержавеющие стали, обладающие стойкостью против атмосферной коррозии кислотостойкие, обладающие высокой сопротивляемостью коррозии в условиях действия агрессивных сред (кислот, щелочей, солей, газов и др-) жаропрочные и жаростойкие, сохраняющие достаточную прочность и ока-линостойкость при высокой температуре. Содержание легирующих элементов в химическом составе этих сталей достигает 30% и более.  [c.34]

В зависимости от основных свойств высоколегированные стали подразделяются па следующие группы коррозионностойкие (нержавеющие) стали, обладающие стойкостью против электрохимической, межкристаллитной, питтинговой (точечной) коррозии, коррозии под напряжением и др. жаростойкие (окалиностойкие) стали, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550 С и работающие в ненагруженном или слабо нагруженном состоянии жаропрочные стали, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностой-костью. Самостоятельную группу, хотя и не предусмотренную стандартом, составляют хладостойкие стали, сохраняющие на протяжении неограниченно длительного времени под напряжением достаточные пластичность и вязкость при температурах от —100 до —269° С и нечувствительные к концентраторам напряжений.  [c.26]

Чистый никель в химическом машиностроении нашел сравнительно ограниченное применение, несмотря на то что, помимо коррозионной стойкости, он обладает повышенной жаростойкостью, значительной пластичностью, хорошими механическими показателями и способностью подвергаться различным видам механической обработки (никель легко прокатывается в горячем и холодном состоянии). Объясняется это тем, что никель не имеет особых преимугцеств по сравнению с нержавеющими сталями, но в некоторых средах, в которых легированные стали непригодны, нашли примеггеиие сплавы никеля с медью и его сплавы с молибденом.  [c.255]

К конструкционным материалам в реакторах предъявляется дополнительное требование радиационной стойкости, т. е. длительного сохранения физических и химических свойств в условиях интенсивнейшего нейтронного облучения. Особенно опасны коррозия и падение механической прочности. Так, коррозия оболочек твэлов и теплоносителей может привести к нарушению герметичности и тем самым к радиоактивному заражению теплоносителя, а иногда и к аварии. Для изготовления конструктивных элементов применяются алюминий, его сплавы с магнием или бериллием, цирконий, керамические материалы, нержавеющая сталь, графит, покрытия из ниобия, молибдена, никеля и некоторые другие материалы.  [c.582]

Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]


Титан обладает тремя основными преимуш,ествами по сравнению с другими техническими металлами малым удельным весом (4,5 Г1см ), высокими механическими свойствами (предел прочности 50—60 кГ1мм у технического титана и 80—140 кГ/мм у сплавов на его основе) и отличной коррозионной стойкостью, подобной стойкости нержавеющей стали, а в некоторых средах и выше. Сочетание малого удельного веса с высокой прочностью, обеспечивающее наибольшую удельную прочность (т. е. прочность на единицу веса), делает титан особенно перспективным материалом для авиационной промышленности, а коррозионная стойкость — в судостроении и в химической промышленности. Для современной высокоскоростной авиации особенно ценным свойством титановых сплавов является также их высокая жаропрочность сравнительно с алюминиевыми и магниевыми сплавами. Титановые сплавы по абсолютной и тем более по удельной прочности превосходят магниевые, алюминиевые сплавы и легированные стали в довольно широком температурном интервале.  [c.356]

В отличие от ранее изданных книг, посвященных тугоплавким металлам и их сплавам, в которых рассматривались преимущественно высокотемпературные свойства, в настоящей книге основное внимание уделено низкотемпературным свойствам, в особенности их коррозионной стойкости в высококонцентрнрованных кислотах. Для химического машиностроения и химической промышленности тугоплавкие металлы являются очень ценным перспективным материалом. Химическая аппаратура, оснащенная деталями из тугоплавких металлов, обладает стойкостыо, во много раз болыией, чем стойкость аналогичной аппаратуры, сделанной из лучших марок нержавеющих сталей. Поэтому применение более дорогих тугоплавких металлов дает все же большой экономический эффект.  [c.2]

Несмотря на более высокую стоимость всех тугоплавких металлов по сравнению с нержавеющими сталями и сплавами на железной и никелевой основах, их применение для изготовления химической аппаратуры экономически оправдано, так как стойкость аппаратуры при этом повьппается во много раз и обычно исчисляется не неделями, а годами.  [c.7]

Титан — один из наиболее распространенных металлов его содержание в земной коре составляет 0,1% [48]. По коррозионной стойкости титан значительно уступает самому стойкому из тугоплавких металлов — Та, но тем не менее в большинстве агрессивных сред Ti более стоек, чем лучшие нержавеющее стали. Сочетание таких свойств, как высокая прочность, небольшая плотность, пластичность, высокая температура плавления и главное относительно невысокая стоимость и доступность, способствовали широкому внедрению этого металла в химическое аппаратостроение [49]. В отличие от тугоплавких металлов (за исключением Та), коррозионная стойкость которых была рассмотрена выше, Ti стоек в окислительных средах, в том числе и в HNO3. Титан уступает многим тугоплавким металлам (Nb, Мо, W) по стойкости в восстановительных средах, однако небольшие добавки палладия (0,1 ат.%) повышают стойкость титана и в этих  [c.51]

Графит имеет исключительно высокую химическую стойкость, а его теплопроводность в 8-10 раз выше чем у нержавеющей стали. Это делает графит весьма перспективным заменителем дефищт-ных нержавеющих сталей при изготовлении теплообменной аппаратуры и, кроме того, позволяет значительно интен1зифицировать технологические процессы. К сожалению, промышленный графит обладает высокой открытой пористостью и проницаемостью для жиц-  [c.85]

Во всех случаях проектирования химической аппаратуры из нержавеющих сталей следует учитывать необходимость проведения термической обработки для некоторых марок сталей в целях повышения коррозионной стойкости, поскольку структурные изменения, происходящие в металле в результате нагрева, например, при штамповке или сварке, как правило, оказывают существенное влияние на его коррозионную стойкость. Следует также учитывать, что сортовой профиль нери<а-веющих сталей заводами черной металлургии поставляется преимущественно термически необработанным. При применении нержавеющих сталей различных марок, в том числе сталей с пониженным содержанием никеля, необходимо строго соблюдать технологию переработки металла уделять большое внимание вопросам сварки сталей (правильности выбора сварочных электродов и соблюдению определенных режимов сварки).  [c.66]

В атмосферных условиях и в условиях повышения влажности ненагру-женные детали из мартенситных нержавеющих сталей не подвергаются заметной коррозии. Однако исследования коррозионной стойкости при повышенных температурах (образцы нагревали до 250 или 350°С, окунали в 3 %-ный раствор Na I и переносили во влажную камеру, где при 50°С выдерживали 22 ч. Затем цикл повторялся. База испытаний составляла 30 суточных циклов) с периодическим смачиванием 3 %-ным раствором Na I показали, что эти стали подвержены точечной коррозии. Общим иеж-ду исследованием выносливости сталей при повышенных температурах и периодическом их смачивании коррозионной средой, определением коррозионной стойкости без приложения к образцам внешних нагрузок при повышенных температурах и периодическом смачивании является то, что в обоих случаях металл поверхностных слоев образцов подвержен усталости вследствие резко циклического изменения температуры с большим градиентом. Определение коррозионной стойкости сталей при периодическом смачивании коррозионной средой может дать качественную картину влияния химического состава и структуры стали на ее коррозионно-механическую стойкость при повышенных температурах.  [c.109]

Выше уже говорилось, что при определенном содержании феррита в аустенитных сталях они становятся более стойкими к коррозионному растрескиванию. Х.Х. Улиг [111,134] отмечает, что аустенитные нержавеющие стали, близкие по своему химическому составу, существенным образом отличаются друг от друга по стойкости к коррозионному растрескиванию вследствие различия в структуре. Так, слабо магнитные и магнитные стали 18-8 не разрушались в процессе 200-часовых испытаний, в то время как немагнитные образцы разрушились за несколько часов. Именно с этой точки зрения следует рассмотреть влияние легирования кремнием на стойкость сталей к коррозионному растрескиванию. Е. Е. Денхард [111,101] указывает, что стойкость к коррозионному растрескиванию у стали 18-12, легированной 4% кремния, улучшается. Сталь 18-8, легированная 2% кремния, немагнитна и разрушается за 15 час. Та же сталь, легированная 1,1—2,7% кремния, слабо магнитна, т. е., очевидно, содержит а-фазу в количестве 5—10%, и не разрушалась по прошествии 250 час испытаний [111,134]. Высокая стойкость к коррозионному растрескиванию стали 18-8С небольшой концентрацией С (менее 0,002—0,004%) и азота (менее0,002—0,004%) [111,134] объясняется тем, что уменьшение содержания этих аустенитообразующих элементов делает сталь двухфазной — с содержанием а-фазы до 10—15% [И 1,123]. С другой стороны, сталь 19-20 с концентрацией менее 0,01% азота и углерода полностью аустенитна и достаточно стойка против коррозионного растрескивания. Та же сталь, но с концентрацией 0,2% углерода, тоже стойка к растрескиванию, но увеличение азота до 0,05% приводит к появлению трещин. Полагают, что в данном случае концентраторами напряжений были нитриды [111,142]. Сталь 18-8, закаленная при температуре 196° С, двухфазна и стойка к растрескиванию, в то время как без этой обработки она разрушалась за 6 час. Увеличение хрома в стали с 8 до 25% при концентрации 20% никеля делает сталь значительно более склонной к коррозионному растрескиванию вследствие уменьшения стабильности аустенита [111,134]. Учитывая изложенное выше, влияние легирующих элементов на коррозионное растрескивание нержавеющей стали  [c.165]


Для уменьшения разрушительного действия кавитации на детали гидроагрегатов применяют стойкие против коррозии материалы (стали с добавкой хрома и никеля) при одновременной тщательной обработке их поверхностей, омываемых кавитнруемой жидкостью. Широко применяют также покрытия деталей материалом, стойким против кавитационного разрушения (бронзой, хромом и пр.).Как правило,стойкость материалов против кавитационного разрушения повышается с увеличением механической их прочности или химической (окислительной) стойкости, причем лучшие результаты дают материалы, в которых совмещаются оба эти качества. Наименее стойкими против кавитации являются чугун и углеродистая сталь наиболее стойкими — бронза и нержавеющая сталь. Увеличение твердости материала повышает, как правило, антикавитационную стойкость. Практика показывает, что увеличение твердости нержавеющей стали со 150 до 400—420 НВ может повысить ее антикавитационную стойкость в десять с лишним раз. Разрушительное действие кавитации на поверхности стальных деталей можно уменьшить путем их нагар-товки. Наиболее стойким из известных материалов является титан.  [c.51]

По комплексу физико-механических свойств титановые сплавы являются универсальным конструкционным материалом, сочетая нехладноломкость алюминия и аустенитных сталей, высокую коррозионную стойкость лучших медноникелевых сплавов и нержавеющих сталей, немагнитность, прочность и удельную прочность более высокие, чем у большинства конструкционных материалов. Поэтому потенциально титановые сплавы эффективны как авиационные и космические материалы, материалы для химической промышленности, судостроения и др. вплоть до материалов тары для хранения ядохимикатов и удобрений в сельском хозяйстве.  [c.230]

Важнейшим химическим свойством титана является его превосходная коррозионная стойкость в различных условиях. Как и в случае нержавеющей стали или алюминия, эту особенность титана можно объяснить образованием на его поверхности пассивирующей окисной пленки, благодаря чему титан устойчив против воздегктвня большинства окислительных сред. Окиспая пленка обладает защитными свойствами только при умеренном нагреве, поскольку при температурах до 249° титан окисляется очень медленно, а при дальнейшем повышении температуры скорость его окисления возрастает. Кроме того, титан взаимодействует с азотом, но при несколько более высокой температуре, чем с кислородом.  [c.764]

Коррозионная стойкость нержавеющей стали практически полностью определяется заданным химическим составом металла и обеспечивается при выплавке стали. Содержание феррита, которое ограничено в аустенитных сталях типа Х18Н10Т для трубной заготовки и листа, также обеспечивается при выплавке стали путем сужения пределов химического состава.  [c.274]

Аморфные сплавы железо — металлоид, получаемые сверхбыстрым охлаждением и не содержащие других металлических элементов, кроме железа, обычно характеризуются довольно высокой скоростью коррозии по сравнению с чистым кристаллическим железом или сталью, что вызвано химической неустойчивостью их аморфного состояния. Однако замена в таких сплавах некоторой части железа хромом приводит к тому, что их коррозионная стойкость становится необычайно вьгсокой, превышающей коррозионную стойкость нержавеющих сталей, высоконикелевых сплавов и других подобных материалов. На рис. 9.1 приведены результаты коррозионных испытаний аморф Ных сплавов системы Fe — Сг — 13 Р — 7 С и кристаллических сплавов системы Fe—Сг при 30°С в 1 н. водном растворе Na l, в котором концентрация Na l в Два раза больше, чем в обычной морской воде. Скорость коррозии определялась по умень-  [c.248]

Если необходима только высокая химическая стойкость, то применяют высоколегированные стали ферритного класса — стали 1X13, Х17Н, Х25Т и т.д. Стали, содержащие более 12% хрома, относятся к нержавеющим.  [c.197]


Смотреть страницы где упоминается термин Нержавеющие стали химическая стойкость : [c.144]    [c.54]    [c.144]    [c.28]    [c.159]    [c.56]    [c.55]    [c.182]    [c.887]    [c.82]   
Справочник азотчика том №2 (1969) -- [ c.287 , c.290 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Стали нержавеющие

Стали нержавеющие стойкость

Химическая стойкость



© 2025 Mash-xxl.info Реклама на сайте