Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Азотная кислота, воздействие

Обычные пассивирующие растворы на основе азотной кислоты воздействуют на карбиды и сульфиды. Это приводит к образованию поверхностных дефектов, не видимых невооруженным глазом. Поверхностные микродефекты удерживают кислоту после обычной промывки водой и приводят к усиленному ржавлению. Коррозионная стойкость может быть восстановлена длительным погружением в пассивирующую ванну или многократной пассивацией. При этом дефекты в виде узких поверхностных щелей превращались в ямки с округленным дном, которые меньше захватывали кислоту и другие агрессивные вещества. Длительная обработка способствовала также образованию окисной пленки в растворявшихся участках. Однако для такой обработки требуется около 24 часов, т. е. операция становится малопроизводительной. Поэтому предложен новый метод очистки поверхности и пассивирования, требующий всего  [c.41]


Назначение — конструкции, не подвергающиеся воздействию ударных нагрузок и работающие в основном в окислительных средах, например, раствора азотной кислоты. Применение в сварных конструкциях в основном ограничивается малыми сечениями деталей (до 3,0 мм). Не рекомендуется использовать для сварных конструкций, работающих в условиях ударных нагрузок. Предельная температура службы сварных конструкций не ниже —20 С. Сталь жаростойкая и коррозионно-стойкая ферритного класса.  [c.479]

Олово и свинец на воздухе покрываются оксидной пленкой, защищающей от несильного коррозионного воздействия при нагревании начинается существенное окисление олова выше 150 X, свинца —выше 100 С. Азотная кислота и щелочи растворяют эти металлы разбавленные соляная и серная кислоты действуют медленно с азотом, водородом и углеродом не соединяются.  [c.56]

Сплав АЛ2 обладает хорошей коррозионной стойкостью в средах влажной атмосферы, морской воды, углекислоты, концентрированной азотной кислоты (см. табл. 48), аммиака, серы, перекиси водорода. На него слабо воздействует сероводород. Может находить ограниченное применение в среде раствора силиката натрия.  [c.73]

Воздействие кислот и щелочей. Снлавы описанных выше составов являются устойчивыми на холоду против воздействия серной н плавиковой кислот и едкой, щелочи. Соляная и азотная кислоты разрушают сплавы за счет растворения в них кобальтовой (никелевой) фазы карбидные фазы при этом практически не затрагиваются.  [c.542]

Стойкость нержавеющих сталей в азотной кислоте определяется не только их Химическим составом, но и металлургическими и технологическими факторами. Для повышения коррозионной стойкости сталей следует стремиться к возможно более низкому содержанию углерода (не более 0,03%, а лучше - 0,02%), кремния (не более 0,40%), фосфора и серы (способствует селективной коррозии). Введение в качестве легирующих элементов стабилизаторов (титана и ниобия) не всегда оправдано, поскольку из- за образования карбидов и карбонитридов, легко растворяющихся под воздействием азотной кислоты, стойкость сталей может резко снижаться. Благоприятно влияют на стойкость сталей в азот-8626 КЗК 45 6 21  [c.21]

Полиэтилен — один из самых распространенных и освоенных промышленностью полимеров, характеризуется высокой стойкостью к воздействию воды и агрессивных сред при температуре до 60 °С. Обладает высокой стойкостью к кислотам, щелочам, многим окислителям и растворителям. Практически не действуют на полиэтилен жиры, масла, керосин и другие нефтяные углеводороды. Фосфорная, соляная и фтористоводородная кислоты в любых концентрациях не оказывают на полиэтилен заметного действия. Однако серная и азотная кислоты при температурах выше 60 °С быстро его разрушают.  [c.122]


Сталь и чугун обладают хорошей устойчивостью к коррозионному воздействию смеси концентрированных азотной и серной кислот. Смесь, состоящая из 70—95%-ной серной кислоты и азотной кислоты, при 18—22°С вызывает коррозию стали (1,.6 до 4,8 г/м2-24 ч). Скорость коррозии находится в пределах  [c.77]

Число особых и при этом сложных закономерностей, обнаруживаемых в процессе деформации ряда пластмасс, очень велико. Отметим некоторые из них. Фторопласты имеют ряд весьма ценных свойств, к их числу относятся широкий (наибольший из известных) температурный диапазон применения (от —269 до 2(50 °С) высокая стойкость к атмосферным воздействиям и к действию любых агрессивных сред, даже таких, как концентрированная азотная кислота при повышенной температуре, пары ртути, озон нерастворимость наиболее высокие антифрикционные качества. Однако не все эти свойства удается в полной мере использовать из-за других особенностей, таких, как возникновение хладо-текучести под воздействием нагрузки.  [c.352]

Коррозионные испытания сварных швов производились путем кипячения макетов в 50-процентном растворе азотной кислоты при температуре 103—108° С в течение 150 ч. Проведенная после коррозионных испытаний проверка сварного соединения на прочность методами, указанными выше, показала, что воздействие коррозионной среды не сказывается заметным образом на качестве сварного соединения.  [c.151]

В качестве пигментов применяют также металлические порошки, например алюминиевую пудру (см. стр. 81), которая благодаря способности отражать солнечные лучи является незаменимой при окраске емкостей для хранения горючих. Укрывистость (сухой пигмент) 10 г1м . Алюминиевая пудра атмосферо- и светостойка, устойчива к воздействию азотной кислоты, окислителей и многих химических веществ.  [c.204]

Повышение интенсивности а-излучения также увеличивает скорость коррозии (табл. 1-9). В сухом воздухе а-излучение не влияет на скорость коррозии. Непосредственному воздействию облучения образцы не подвергались. Под действием а-излучения во влажном воздухе образуются озон, окись азота и азотная кислота. В продуктах коррозии обнаружены нитраты.  [c.40]

Азотная кислота пассивирует нержавеющую сталь, но она не применима в том случае, когда оборудование парогенераторов изготовлено из обычной стали, которая под воздействием этой кислоты подвергается интенсивной коррозии.  [c.352]

Асбестовый фаолит хорошо сопротивляется воздействию многих неорганических и органических кислот, растворов солей, некоторых органических соединений (формалина, бензола) и газов, но разлагается под воздействием 10%-ной азотной кислоты, плавиковой кислоты и щелочей.  [c.301]

Уточним технические требования, предъявляемые к резиновым прокладкам, работающим в контакте с агрессивными жидкостями. Определяющим требованием является низкая степень набухания и инертность материала к воздействию азотной кислоты. Кроме того, резина должна характеризоваться низкой скоростью накопления остаточной деформации. Из условий работы прокладки можно сделать вывод об отсутствии температурного воздействия на материал при эксплуатации.  [c.49]

Кроме того, титан стоек в царской водке при комнатной температуре, в различных смесях серной и азотной кислот при температурах до 35° С. Полностью устойчив титан в холодных и горячих растворах следующих солей сернокислая медь, углекислый натрий, цианистый натрий, сульфит и сульфат натрия и др. Высокой стойкостью он обладает также в расплавленной сере, ряде расплавленных металлов олове до температуры 480° С, галлии до 400° С, магнии до 700° С и ртути до 350° С (при ограниченном сроке воздействия).  [c.34]

Сильное воздействие на оловянные бронзы оказывают соляная и азотная кислоты менее активной является серная кислота.  [c.109]

В химическом отношении никель малоактивный металл. Он имеет высокую коррозионную стойкость в атмосфере воздуха, устойчив к воздействию воды и многих агрессивных сред, например щелочей. Заметное окисление никеля на воздухе наблюдается при температурах выше 700— 800°С. Серная и соляная кислоты растворяют никель медленно, а в азотной он растворяется легко. Органические кислоты воздействуют на никель только после длительного соприкосновения с ним.  [c.184]


Коррозионная стойкость чистого алюминия высокая благодаря защитному действию плотной пленки окисла. Алюминий стоек в атмосферных условиях и под воздействием концентрированной азотной кислоты, но легко разрушается соляной, серной кислотами и щелочами. Чем чище алюминий, тем выше его коррозионная стойкость.  [c.278]

Титан коррозионно-стоек при температурах до 500 °С и начинает взаимодействовать с кислородом воздуха при температурах выше 600 °С. Он достаточно стоек к воздействию морской воды, азотной кислоты, слабых растворов серной кислоты, но реагирует с соляной, плавиковой и концентрированной серной кислотами.  [c.337]

Эпоксидные смолы после отверждения весьма устойчивы к ко[)розионному действию многих химических реагентов. Они противостоят воздействию соляной кислоты, разбавленной серной кислоты, растворов щелочей, воды и растворов иеоргапиче-ских солей вплоть до температуры 90° С. Из органических веществ спирты, хлорированные углеводороды, ароматические и алифатические углеводороды, а также фруктовые соки не оказывают влияния на эти смолы. При действии серной кислоты концентрации более 50%, азотной кислоты концентрации более  [c.407]

Еще в XVHI веке было замечено, что железо хорошо реагирует с разбавленной азотной кислотой, но не подвергается видимому воздействию концентрированной [1]. При перенесении железа из концентрированной азотной кислоты в разбавленную временно сохраняется состояние устойчивости к коррозии. Шон-бейн [2 ] в 1836 г. назвал железо, находящееся в коррозионноустойчивом состоянии, пассивным. Он показал также, что железо можно перевести в пассивное состояние путем анодной поляризации. В это же время Фарадей [3] провел несколько экспериментов, показывающих, среди прочего, что элемент, состоящий из пассивного железа и платины, в концентрированной азотной кислоте почти не продуцирует ток, в отличие от амальгамы цинка в паре G платиной в разбавленной серной кислоте.  [c.70]

Особым коррозионным свойством циркония является его стойкость в щелочах всех концентраций при температурах вплоть до температуры кипения. Он стоек также в расплаве гидроксида натрия. В этом отношении он отличается от тантала и, в меньшей степени, от титана, которые разрушаются под воздействием горячих щелочей. Цирконий стоек в соляной и азотной кислотах любой концентрации и в растворах серной кислоты с содержанием H2SO4 < 70 % вплоть до температур кипения этих сред. В НС1 и подобных средах оптимальной стойкостью обладает металл с низким содержанием углерода (<0,06 %). В кипящей 20 % НС1 после определенного времени выдержки наблюдается резкое возрастание скорости коррозии конечная скорость составляет обычно менее 0,11 мм/год [461. Цирконий не стоек в окислительных растворах хлоридов металлов (например, в растворах Fe lg наблюдается питтинг), а также в HF и кремнефтористоводородной кислоте.  [c.379]

Никелевые сплавы (например, 12Х25Н60В15) устойчивы к воздействию горячих и холодных щелочей, разбавленных окисляющих органических и неорганических кислот, а также к воздействию атмосферы [81]. Аэрация и повышение температуры увеличивают скорость коррозии никелевых сплавов. В рас-творах азотной кислоты никель имеет сравнительно низкую коррозионную стойкость.  [c.17]

Стойкость титана против воздействия серной кислоты зависит от ее концентрации и в разбавленных растворах является удовлетворительной. Соляная ислота реагирует с титаном, особенно при повышенных температурах. Присутствие следов хромовой или азотной кислоты уменьшает скорость воздействия серной и соляной кислот. Плавиковая кислота относится к числу немногих реактивов, сильно действующих на титан. Кроме того, титан быстро корродирует в горячих органических кислотах щавелевой, треххлоруксусной и муравьиной-Кипяшие растворы уксусной, молочной, лимонной и стеариновой кислот всех концентраций, а также других органических соединений (четыреххлористый углерод, трихлорэтилен, формальдегид, хлороформ) на титан практически не действуют.  [c.358]

Травитель 28 [несколько крупинок СгОд HNO3I. Вследствие способности к очень локальному воздействию этот раствор пригоден для выявления фигур травления (см. Пулсифер [17]). Кроме него, для этой цели можно использовать также концентрированную дымящуюся азотную кислоту.  [c.190]

Травитель 29 [10—20 мл НЕ 10 мл HNO3 30 мл глицерина]. Вилелла [28] опробовал этот реактив для наблюдения промежуточных фаз при одновременном выявлении структуры. При применении в качестве растворителя глицерина скорость травления сущ,ественно замедляется по сравнению с использованием водного раствора (рис. 93). В начале структура выявляется очень медленно. Но если шлиф подогреть в горячей воде и без промежуточного высушивания перенести в раствор для травления, то травление проходит быстрее. Травящее воздействие на поверхность зерен регулируют содержанием азотной кислоты. С помощью этого реактива в литых образцах обнаруживают дендритную ликвацию, причем прежде всего протравливается алюминиевая основа. Чередуя полировку и травление раствором 29, можно выявлять также границы зерен.  [c.259]

Анализ адсорбционно-десорбционных свойств окисленных азотной кислотой волокон HMG-50 (табл. 8) показывает, что на их поверхности наблюдаются значительная адсорбция ионов Na+ и LI+, а также адсорбция NaOH и LiOH в количестве 0,186 и 0,196 мкМ/м2 соответственно. Практически происходит полная десорбция ионов Na+ и Li+. При обработке 0,1 н. раствором НС1 воздействие на волокно раствора соли Li l приводит к незначитель-  [c.247]

В условиях воздействия азотсодержащих соединений (азотная кислота, производные гидразина) роста микрогрибов не наблюдается, однако разрущения ЛКП в ряде случаев значительны (лаки СБ-1с, ГФ с алюминиевой пудрой, эмаль ХВ-714) в результате прямого воздействия этих соединений. При низких концентрациях их (до 0,1 мг/л) грибы выживают и влияют на материалы.  [c.33]


Получены данные [34 и др.] об инертности Та к воздействию азотной кислоты, царской водки, хлорной кислоты. Органические кислоты, такие, как монохлоруксусная, метилсерная, бромистоводородная, муравьиная, карболовая, лимонная, окислы хрома и азота, хлориды серы и фосфора, перекись водорода, фенол, сероводород, независимо от концентрации и температуры не воздействуют на тантал. Это далеко не полный перечень сред, в которых тантал абсолютно стоек. Гораздо легче перечислить среды, в которых тантал корродирует  [c.49]

Кадмиевые, оловянные или цинковые покрытия могут отделяться от основных слоев стали при использовании раствора соляной кислоты, содержащей трехокись или трихлорид сурьмы, который действует как ингибитор и приостанавливает воздействие кислоты на сталь (Английские стандарты 1706 и 1872). Кадмий можно отделить в 30%-ном растворе азотнокислого аммония, а цинк — в растворе 5 г персульфата и 10 мл гидрата окиси аммония в 90 мл воды (Английский стандарт 3382). Покрытия из сплавов олова с никелем отделяют электролитически в растворе, содержащем 20 г/л едкого натра и 30 г/л цианистого натрия, а медное покрытиепогружением в концентрированную фосфорную кислоту (Английский стандарт 3597). Серебряные покрытия вначале погружают в смесь концентрированных азотной и серной кислот в соотношении 1/19, а после потемнения— в 250 г/л раствора трехокиси хрома в концентрированной серной кислоте (Английский стандарт 2816). Основной слой отделяют от покрытия золотом путем растворения в концентрированной азотной кислоте. Отфильтрованное золото промывают, просушивают и взвешивают (Английский стандарт 4292).  [c.143]

Холодная соляная кислота медленно действует на серебро благодаря образованию нерастворимой пленки из хлорида серебра горячая кислота разрушает эту пленку, и скорость коррозии резко возрастает. Окислители усиливают разрушающее действие соляной кислоты. В разбавленной серной кислоте серебро ведет себя так же, как и в разбавленной соляной кислоте. Концентрированная серная кислота сильно воздействует на серебро при повышенной тепературе. Азотная кислота растворяет серебро при различных температурах и концентрациях, а царская водка образует на его поверхности нерастворимую защитную пленку из хлорида серебра.  [c.146]

Черный железооксидный пигмент. Синтетический черный железооксидный пигмент, по химическому составу представляющий собой оксид Рез04, отличается от природного магнетита более высокими пигментными свойствами — насыщенным синевато-черным цветом, высокими укрывистостью и красящей способностью, свето- и атмосферостойкостью обладает ферромагнитными свойствами, сильно зависящими от условий его получения. Плотность пигмента 4730 кг/м маслоемкость— 28 г/100 г пигмента средний размер частиц 0,25— 0,5 мкм. Растворяется в слабых кислотах, некоторых органических кислотах, но с трудом поддается воздействию концентрированной азотной кислоты не растворяется в аммиаке. При прокаливании с доступом воздуха легко окисляется, переходя в красный оксид железа [21].  [c.64]

Замазка Слокрил-1 представляет собой композицию, состоящую из ненасыщенного полиэфирного полимера слокрил-1, инициатора твердения (гипериза), ускорителя твердения (нафтената кобальта), заполнителя (кварцевая, андезитовая мука, маршалит, графитовый порошок) и тиксотропной добавки (аэросила). Замазка стойка к воздействию двуокиси хлора (до 7 г/л), кислот — серной (до 50 %), соляной (до 30%), азотной (до 30%), фосфорной (до 30%), едкого натра (до 30 %), хромового ангидрида (до 20 г/л). Температурный интервал применения от —30 до -Ь100°С, за исключением воздействия азотной кислоты, в которой замазка Слокрил-1 может эксплуатироваться при температуре до 40 °С. Наибольшее применение эта замазка находит для защиты отбельных производств в целлюлозно-бумажной промышленности.  [c.111]

Полипропилен выпускается в виде nopoufKa белого цвета или гранул с насыпной массой (0,4—0,5) г/см. Полипропилен имеет более высокую температуру плавления, чем полиэтилен и соответственно более высокую температуру размягчения. Максимальная температура использования полипропилена достигает 393—413 К. Все изделия из полипропилена не только выдерживают кипячение, но могут подвергаться стерилизации паром без какого-либо изменения их формы или механических свойств. Полипропилен — химически стойкий материал. Заметное воздействие оказывают на него только окислители — хлорсульфоновая кислота, дымящая азотная кислота, галоиды, олеум. В органических растворителях полипропилен при комнатной температуре незначительно набухает. Выше 373 К он начинает растворяться в ароматических углеводах, таких как бензол, толуол.  [c.55]

Сталь 000Х20Н20С5 специально разработана для службы в сварных конструкциях, подвергающихся воздействию концентрированных растворов азотной кислоты при температуре 80°- 100° С. С этой целью сталь легирована большим количеством кремния (до 6%), повышающего коррозионную стойкость в средах с сильно окислительным потенциалом. Стали имеют низкое содержание углерода — не более 0,03%, что обеспечивает высокую стойкость против межкристаллитной коррозии.  [c.124]

Значительный интерес представляло изучить, как воздействует облучение на гетерогенные системы воздух — вода и азот — вода. Райт, проводя опыты на эту тему, установил, что при облучении тепловыми нейтронами (дозы 101 ц1см ) систем, содержащих воду и воздух или азот, образуется азотная кислота и перекись водорода, которые являются, как известно, весьма агрессивными агентами. Концентрация ионов водорода при этом соответствует примерно количеству образующейся азотной кислоты. Такие процессы Оказывают существенное влияние на электрохимическое поведение и скорость коррозии металлов.  [c.282]

Эпоксидные, отвержденные эфиром, амином, полиамидом 65—120 Стойки к воздействиям многих неорганических неокисляющих кислот. Не стойки в растворах серной кислоты с концентрацией выше 60 % и азотной кислоты с концентрацией выше 10%. Отвержденные амином стойки к действию щелочей, отвержденные эфиром — не стойки. Обычно стойки к действию алифатических и ароматических разбавителей и спиртов. Малостойки к активным разбавителям (кетонам). Отличаются хорошей водо- и влагостойкостью  [c.102]

Условия фосфатирования (табл. 53) ухудшаются в присутствии окислов железа, примесей алюминия, мышьяка, свинца, сульфатов и хлоридов. Образующаяся под воздействием азотной кислоты фосфорнокислая соль железа FeP04 оседает в виде шлама на дне ванны и на поверхности заготовки, ухудшая качество покрытия.  [c.199]


Смотреть страницы где упоминается термин Азотная кислота, воздействие : [c.359]    [c.22]    [c.196]    [c.235]    [c.247]    [c.63]    [c.77]    [c.40]    [c.269]    [c.557]    [c.784]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.0 ]



ПОИСК



Азотная

Азотная кислота, воздействие на асбовинил

Азотная кислота, воздействие на битумные материалы

Азотная кислота, воздействие на замазки на основе смол

Азотная кислота, воздействие на лакокрасочные покрытия

Азотная кислота, воздействие на металлы и сплавы

Азотная кислота, воздействие на составы на основе серы

Азотная кислота, воздействие полиэфирных

Азотная кислота, воздействие феноло-формальдегидных

Азотная кислота, воздействие фуриловых

Азотная кислота, воздействие эпоксидных

Кислота азотная



© 2025 Mash-xxl.info Реклама на сайте