Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ячейка деформация

Таким образом, объясняется изменение твердости в отожженной (нормализованной) или отпущенной стали, имеющей структуру феррито-цементитной смеси разной дисперсности. Но объяснить так высокую твердость мартенсита нельзя. Высокая твердость мартенсита объясняется тем, что элементарные кристаллические ячейки его искажены, вследствие чего пластическая деформация затруднена и образование сдвигов в мартенсите почти невозможно.  [c.277]

Для процесса возникновения и эволюции ячеистой дислокационной субструктуры характерны следующие закономерности [211, 242, 320, 357]. Образование ячеистой структуры происходит, начиная с некоторой критической деформации. Для описания ячеистой структуры обычно используют такие параметры средний размер ячейки, распределение ячеек по размерам, ширина стенок ячейки, разориентация соседних ячеек, плотность дислокаций в стенках ячеек и в объеме. Все указанные величины изменяются с ростом пластической деформации. С повышением пластической деформации еР диаметр ячеек d уменьшается, пока не достигает некоторого предельного значения — обычно 0,25—3 мкм. Все остальные перечисленные параметры ячеистой структуры, интенсивно изменяясь с ростом на начальных этапах деформирования ячеек, при дальнейшем деформировании стабилизируются и приближаются к некоторым характерным значениям стабилизируются плотность дислокаций в границах ячеек, толщина стенок ячеек и дисперсия функции их распределения по размерам. Поэтому увеличение напряжений, необходимых для распространения микротрещин через границы ячеистой структуры, по всей видимости, в первую очередь обусловлено уменьшением размера ячеек. В изложенной ниже модели принято, что плотность дислокаций в стенках ячеек постоянна, а увеличение общей плотности дислокаций, обусловленное пластической деформацией, приводит к образованию новых границ и тем самым к уменьшению диаметра ячеек.  [c.78]


Для определения влияния пластического деформирования на 5с необходимо определить зависимость диаметра d от пластической деформации. Для этого рассмотрим регулярную субструктуру со средним диаметром ячейки d. Предполагая, что все дислокации находятся в стенках ячеек, для средней плотности дислокаций будем иметь  [c.79]

Поскольку поле начальных деформаций в перфорированной зоне однородно, будем рассматривать элементарную ячейку зоны с размерами, представленными на рис. 6.4. Начальную деформацию определим в декартовой системе координат как среднеинтегральную остаточную пластическую деформацию по объему выделенной ячейки (рис. 6.4).  [c.336]

Таким образом, вводя поля начальных деформаций е° и задавая на расстоянии н радиальные напряжения Рн , полностью моделируется остаточное НДС после развальцовки всех трубок в коллекторе. Затем, нагревая ячейку коллектора с трубкой (рис. 6.3) до температуры эксплуатации и одновременно добавляя к Рн напряжения Рн, моделируем взаимодействие ОН с эксплуатационной термомеханической нагрузкой.  [c.340]

Вследствие упругого взаимодействия между дислокациями сопротивление их движению сильно возрастает и для их продвижения внешнее напряжение должно резко возрасти (стадия // упрочнения). Под влиянием все возрастающего наиряжения развивается поперечное скольжение винтовых дислокаций, т. е. скольжение с переходом из одной разрешенной плоскости скольжения в другую. Это приводит к частичной релаксации напряжений, аннигиляции отдельных дислокаций разного знака и группировке дислокаций в объемные ячейки, внутри которых плотность дислокаций меньше, чем в стенках ячеек. Наступает /// стадии деформации, когда происходит так называемый динамический возврат, который приводит к уменьшению деформационного упрочнения.  [c.46]

Изменение плотности и перераспределение дефектов кристаллической решетки — процессы, которые протекают в металле, находящемся в неравновесном состоянии после холодной пластической деформации или быстрого (закалочного) охлаждения с высоких температур. Холодная деформация приводит к увеличению плотности дислокаций. У отожженного поликристаллического металла плотность дислокаций 10 ... 10 см , а после значительной деформации — 10"...Ю см . Дислокации образуют замкнутые сплетения, которые разделяют металл на отдельные ячейки размером порядка одного микрометра. Внутри ячеек плотность дислокации сравнительно не велика.  [c.509]


Деформация на дне прямоугольной ячейки определяется интенсивностью наложенного циркуляционного движения с постоянной завихренностью. Исходя из предположения о стационарности поля скоро стей и независимости его от продольной координаты, скорости и и., рассчитывались решением системы уравнений Эйлера при обычных условиях непротекания на границах прямоугольной ячейки продольная скорость определялась из уравнения Навье-Стокса. Решение содер жит два эмпирических, определяемых параметра - отношение размеров ячейки и завихренность.  [c.27]

Экспериментально диаграмму сдвига можно получить при скручивании тонкостенной трубы (рис. 190). Действительно, мысленно выделенный элемент стенки трубы (ячейка ортогональной сетки, предварительно нанесенной на поверхности трубы) находится в условиях чистого сдвига, характеризуемого напряженным состоянием, показанным на рис. 188. Рассматривая деформацию этого элемента в пределах упругости, найдем, что между относительным сдвигом и касательными напряжениями, действующими по граням элемента, согласно диаграмме сдвига (рис. 189), существует линейная зависимость, которая может быть выражена формулой  [c.216]

При прочих равных условиях факторы, затрудняющие поперечное скольжение (низкая энергия дефектов упаковки, низкая температура деформации), благоприятствуют образованию более мелкой ячеистой структуры, но с более размытыми ( толстыми ) стенками ячеек и с большим избытком дислокаций одного знака, т. е. с большими углами разориентировки между ячейками.  [c.318]

Одной из особенностей субструктуры при горячей деформации является то, что средние разориентировки между ячейками (субзернами) невелики (1—3°) и в несколько раз (в два — четыре) меньше, чем после холодной деформации.  [c.367]

Вместе с тем, как показал тщательный структурный анализ (рентгеноструктурный и электронномикроскопический), компоненты текстуры деформации 111 и 100 различаются по степени наклепа. Компонента Ш более наклепана — выше плотность дислокаций, больше разориентировки между соседними ячейками, меньше размеры ячеек, но больше разброс по размерам, чем у компоненты 100 . Следовательно, в объемах Ш , с одной стороны, больше скорость формирования центров рекристаллизации, которая начинается в холоднокатаных листах примерно при 500° С, а с другой — выше скорость распада пересыщенного раствора тормозить зарождение разных текстурных компонент можно в этих условиях с помощью разной скорости нагрева.  [c.415]

Образец находится в нижнем и верхнем захватах, вынесенных во избежание контактной коррозии из электрохимической ячейки. Растягивающее напряжение в образце создается при помощи груза и рычажной системы с передаточным отношением 100 1. Максимальное растягивающее усилие, обеспечиваемое установкой, составляет 18 620 Н. Деформацию образца в процессе испытания измеряют при помощи микрометра.  [c.88]

Технологические режимы включают обычно холодную обработку, с возвратом, циклическую обработку, крип или горячую обработку с динамическим и статическим возвратом [262, 275]. С увеличением сте-. пени деформации в каждом из них, исключая возврат, наблюдаются. повышение плотности дислокаций и перестройка дислокационной структуры, приводящая, в конечном итоге, к образованию ячеистой структуры, изменение размеров которой имеет тенденцию к насыщению [9].. Напряжение течения обычно пропорционально р независимо от степени развития ячеистой структуры Более того, дислокационные ячейки (субзерна) увеличиваются, плотность дислокаций в них уменьшается,, границы ячеек (субзерен) становятся более узкими и упорядоченными,, когда изменяется любой из следующих факторов — температура и время деформации увеличиваются, а напряжение, скорость и амплитуда деформации уменьшаются [9, 275].  [c.127]

Дислокационная ячеистая структура становится устойчивой при-деформации порядка е = 0,2. Часто наблюдается стабилизация размера ячеек (при деформации е 0,4—0,6), дальнейшее увеличение напряжения течения в этом случае ассоциируется с повышением плотности стенок ячеек и их разориентации [9, 275]. По другим данным [299], размер ячейки уменьшается с деформацией непрерывно,  [c.127]


Размер ячейки является одним из важных параметров для характеристики дислокационной структуры материала наряду с такими, как общая плотность дислокаций р, плотность дислокаций в стенках ячеек Рея. угол разориентировки ячеек <р, средняя длина свободного пробега дислокаций L [9, 233, 259]. В работах [259,, 3011 отмечается, что при больших степенях деформации, когда определяющую роль играют разориентированные дислокационные субструктуры, важным структурным параметром становится локальная избыточная плотность дислокаций ризб.  [c.128]

Для деформационной ячеистой структуры, образованной при низкотемпературной деформации без последующей термообработки и характеризующейся высокой плотностью дислокаций в границах и малой угловой разориентацией между ячейками, наблюдается зависимость (3.30). Комбинация уравнений (3.23) и (3.30) приводит, в свою очередь, к линейной зависимости напряжения течения от обратной величины диаметра ячейки  [c.128]

Таким образом, электронно-микроскопическое исследование показало [330], что обнаруженный путем обработки кривых нагружения в координатах 5 — е / стадийный характер кривых упрочнения обусловлен сменой дислокационных структур сплава в процессе деформации по схеме лес клубки ячейки. Смена структурных состояний наблюдается в узких интервалах деформаций (е — и приводит к изменению величины коэффициента параболического упрочнения К.  [c.140]

Подставляя в уравнение (3.74) значение L, найденное из уравнения (3.55) для Къ получаем окончательное выражение для зависимости размера ячейки от деформации  [c.159]

Во второй оценке (кривая 11) принимается, что кристаллографические зерна, в пределах которых локализуются перетяжки на последнем этапе деформации (рис. 5.19, б), могут вытягиваться только до некоторого конечного размера в поперечнике, равного 0,2—0,3 мкм, т. е. минимального размера ячейки, наблюдаемого в эксперименте (302, 438]. При этом предполагается, что в поперечном сечении перетяжки уже не остается субграниц, препятствующих движению дислокаций, и разрушение произойдет сдвигом по одной системе скольжения. Максимальная деформация в этом случае оценивается по выражению  [c.218]

Наряду с определением деформаций между реперными точками неоднородность деформаций оценивалась с помощью делительной сетки с размером ячейки 10 мкм. Нанесение сетки осуществлялось на приборе ПМТ-З, где вместо стандартного алмазного индентора устанавливали нож, с помощью которого на поверхность микрошлифа. наносились линии с интервалом в 10 мкм в двух взаимноперпендикулярных направлениях.  [c.20]

При решении динамической упругопластической задачи возникает вопрос о пространственно-временной аппроксимации процесса взрывной запрессовки трубки в коллектор. На рис. 6.3 представлена схема расчетного узла ячейки коллектора для расчета собственных напряжений и деформаций. Здесь Явн — внутренний радиус трубки б — толщина трубки, S — толщина стенки коллектора а — ширина перемычки между отверстиями. Выбор величины радиуса Ян проводится посредством численных расчетов из условия инвариантности НДС от Rh при неизменных характере и уровне импульсной нагрузки при взрыве. Расчет НДС проводится в осесимметричной постановке и отражает ряд существенных особенностей процесса запрессовки трубки в коллектор. К ним относятся возможность учета сложного характера распределения во времени и пространстве давления на внутренней поверхности трубки, обусловленного неодновременной детонацией цилиндрического заряда. Кроме того, с помощью специальных КЭ достаточно хорошо моделируется условие контакта трубки с коллектором в процессе прохождения прямых и отраженных волн напряжений при динамическом нагружении. Учет указанных особенностей позволяет рассчитывать неоднородное поле напряжений и деформаций по высоте трубки (толщине коллектора) и, следовательно, достаточно надежно при учете общ.их, остаточных и эксплуатационных напряжений проанализировать НДС в зоне недовальцовки, в которой инициировались имеющиеся разрушения в коллекторе.  [c.334]

Полигонизация — процесс образования разделенных малоугловыми границами субзерен. Полигонизация представляет собой развитие возникшей при пластической деформации ячеистой структуры. Размытые, объемные сплетения дислокаций вокруг ячеек становятся более узкими и плоскими и превращаются в субграницы, а ячейки — в субзерна. Процесс развивается при температурах более высоких, чем температура отдыха. Субграницы образуются в результате поперечного скольжения и переползания дислокаций в направлении достройки или сокращения экстраплоскостей. Хао тически распределенные дислокации выстраиваются в вертикаль ные стенки. Тело субзерен практически очищается от дислокаций Решетки соседних субзерен получают небольшую разориентиров ку (до нескольких градусов). Скорость полигонизации контроли руется относительно медленной скоростью переползания дислока ций, которая определяется скоростью перемещения вакансий Примеси, образующие на дислокациях облака Коттрелла, тормо зят полигонизацию. Субзерна при продолжительной выдержке и повышении температуры склонны к коалесценции, т. е. укрупнению. Движущей силой в этом случае служит разность энергий субграниц до и после коалесценции. При дальнейшем повышении температуры получает развитие процесс первичной рекристаллизации.  [c.511]

Методика исследования. Но. плоских поликристаллических образцах с рабочей длиной 20- 80 мм, величиной зерна 40- -30 мкм мч-тодом делительных сеток с ячейкой 20, 60, 100 мкм определялись составляющие тензора деформации Схх, Пуу, Сху и поворот (О, при актк ном растяжении со скоростями 1 10 1/сек 4 10 1/сек и пе емеч-ной жесткостью 1 кн/мм, 0,6 кн/мм, 0,2 кн/мм.  [c.83]

Рассмотрим механизм возникновения пьезополяризации на примере кварца. На рис. 8.11 изображена гексагональная элементарная ячейка SiOs, в которой имеет место чередование положительных и отрицательных ионов. Легко видеть, что в отсутствие внешних напряжений дипольный момент ячейки равен нулю. Пусть под действием механических напряжений элементарная ячейка растягивается (рис. 8.11,6). Такая деформация приводит к появлению дипольного момента P=qAa, где q — заряд ионов Да —  [c.295]


Рассматривая тонкий слой материала на поверхности бруса, ограниченный любой ячейкой сетки (например, ячейкой kn d на рис. 22.1), видим, что эта ячейка при деформации перекашивается, принимая положение kn d. Аналогичную картину мы наблюдали при изучении деформации сдвига.  [c.223]

При достаточно высокой степени деформации (е> >80- -90%) максимальная разориентация соседних ячеек превышает 5—10° при средней разориентации 2—3°. Имеется критический угол 0кр разориентировки границы ячеек. При 0<0кр<2н-5° границы ячеек оказывают сопротивление движению дислокаций по типу сопротивления дислокаций леса . Если 0> 2-4-5°, границы ячеек становятся столь же эффективными барьерами для передачи скольлсения, как и границы зерен, повышая тем самым деформирующее напряжение. Передача пластической деформации через такие границы сопровождается нагромождением дислокаций. В отличие от разных стадий пластической деформации, когда длина плоскости нагромождения ограничена размером металлографически выявляемого зерна, при больших деформациях длина плоскости нагромождения ограничена размером ячейки. Формирование ячеистых дислокационных структур зависит от условий деформации, среди которых главными являются температура, степень и скорость деформации, вид напряженного состояния. Многочисленные экспериментальные данные дают основание утверждать что снижение температуры деформации, повышение скорости деформации, легирование (при условии, что легирование не сильно влияет на величину энергии дефекта упаковки) или загрязнение металла, повышая напряжение течения, одновременно затрудняют формирование ячеистой структуры. Ячеистая структура оказывает непосредственное влияние на свойства деформированного металла, причем структурно чувствительные механические свойства зависят не только от размера ячейки, но и от угла 0 между соседними ячейками.  [c.251]

При низкотемпературной пластической деформации, когда полигонизационные процессы затруднены, пространство между возникшими на ранних стадиях пластической деформации сплетениями быстро заполняется дислокациями, причем с понижением температуры однородность такого распределения нарастает. Дальнейшая пластическая деформация сопровождается исключительно высокой концентрацией точечных дефектов благодаря пересечению движущихся дислокаций с дислокациями леса высокой плотности (Л/д= 10 —10 м ) и образованию значительного количества порогов, порождающих при дальнейшем перемещении дислокаций вакансии и межузельные атомы. После низкотемпературной деформации всего лишь на 10% концентрация точечных дефектов возрастает до 10 —10 ° см т. е. nlN= = (10 —10 " ). Таким образом, достигается концентрация, равная концентрации вакансий Ю"" при температуре плавления. Рост концентрации точечных дефектов и особенно вакансий приводит к увеличению объема при пластической деформации на величину до 0,25%. Процессу образования разориентированной ячеистой структуры в области низких температур (0,2—0,3) Гпл способствует хаотическое распределение дислокаций высокой плотности, приводящее к возникновению точечных дефектов. Увеличение точечных дефектов способствует переползанию краевых дислокаций и, следовательно, как и при полигонизации с развитым неконсервативным движением дислокаций, возможно образование разориентированной ячеистой структуры. При этом пластическая деформация при низкой температуре сопровождается уменьшением размеров ячейки в направлении деформирующего усилия и ее увеличением в направлении вытяжки при прокатке, прессовании, волочении. В связи с этим возникает слоистая ячеистая структура. Особенностью дислокационного строения такой структуры является то, что плотность дислокаций внутри таких ячеек сущ ественно не изменяется, т. е. дислокации, вызывающие изменение формы слоистой ячейки, выходят на ее поверхность или поверхность зерна.  [c.254]

ПРИНЦИПИАЛЬНАЯ СХЕМА КОНТРОЛИРУЕМОГО ОБРАЗОВАНИЯ СУБСТРУКТУРЫ. Рассмотрим образование субструктуры с заданными характеристиками (параметрами), т. е. с заданными размерами субзерен (ячейки) б и их углами разориентировки 0. Такое управляемое (или контролируемое) структурообразо-вание можно построить на основе имеющихся экспериментальных данных о зависимости основных характеристик субструктуры от степени деформации, температуры, времени выдержки между последовательными этапами деформирования и др.  [c.256]

В случае нагрева материала, в котором при деформации сформировалась дислокационная ячеистая структура (случай наиболее частый), полигонизация заключается в сплющивании объемных дислокационных сплетений (стенок ячеек) и превращении этих сплетений в плоские субграницы. При Ьтом ячейки превращаются в субзерна (рис. 178).  [c.306]

Наряду с анализом наблюдаемых длин линий скольжения делались попытки развить теорию второй стадии упрочнения [8, 237] на основании данных электронно-микроскопических исследований структуры. Так, подобно Зегеру [253], Хирш [237] и Фридель [8] полагают, что плоские скопления дислокаций образуются, но затем релаксируют путем вторичного скольжения, формируя наблюдаемые сплетения, которые и являются главным препятствием для дальнейшего скольжения. На основе дислокационных сплетений (клубков) при дальнейшей деформации образуются свободные от дислокаций ячейки, окруженные стенками с высокой плотностью дислокаций.  [c.102]

Формирование ячеистых дислокационных структур при деформации характерно, по-видимому, для всех металлов при определенных условиях испытания, среди которых основными являются температура и степень деформации, а также скорость деформации и схема напряженного состояния [9]. Хольт [276], используя математический аппарат, развитый для анализа спинодального распада пересыщенных твердых растворов, впервые показал, что движущей силой перестройки, вызывающей образование модулированной структуры, является уменьшение общей упругой энергии системы за счет взаимодействия дислокаций противоположного знака. Конечным результатом такой перестройки является формирование ячеистой структуры с размером ячейки  [c.120]

Минимальный достигаемый размер дислокационных ячеек в значительной степени зависит от величины энергии дефекта упаковки [9]. Такие данные были получены Макквином [303] для ГЦК-металлов, заметно различающихся по величине энергии дефекта упаковки (алюминий, никель, медь и,латунь). В указанных металлах при одинаковых условиях деформации при температуре 0,55Тш, наблюдалось формирование ячеистой структуры, но размер ячейки увеличивался с ростом энергии дефекта упаковки.  [c.128]

В результате очищения объемов ячеек от внутренних дислокаций и утонения стенок ячейки полигонизуются в субзерна (см. рис. 3.15). Рост субзерен далее осуществляется в основном за счет разрушения более слабых субграниц и движения освободившихся дислокаций к другим субграницам. Скорость возврата может быть увеличена наложением небольшого напряжения. Возврат под напряжением является, по сути, крипом, хотя за счет малого времени приложения нагрузки заметные деформации не достигаются [275]. Дальнейшее развитие возврата может быть прекращено конкурирующим процессом рекристаллизации.  [c.130]

Макквин [275] предполагает, что показатель степени в модифицированном уравнении Холла — Петча (3.46) должен отличаться для субструктур, полученных при разных степенях деформации и разных режимах отжига [308]. Так, для сплавов на основе железа и алюминия в холоднодеформированном состоянии упрочнение изменялось пропорционально (см. уравнение (3.43)). В то же время для субструктур, формирующихся в указанных сплавах при отжигах с различными выдержками при одной и той же температуре, будет характерна и разная зависимость между плотностью дислокаций и диаметром ячейки, так как известно [275], что избыточные дислокации в стенках аннигилируют раньше, чем начинается рост ячеек. Следовательно, показатель степени, равный может наблюдаться для наклепанного материала, в котором прошел возврат [275, 308], что уже отмечалось выше. В этом плане, возможно, представляет интерес сравнить весь комплекс механических свойств субструктур в данном материале, имеющих один и тот же размер и полученных при различных режимах термомеханической обработки. Однако такие сведения в литературе отсутствуют.  [c.132]


Характеристический размер масштаба протекания пластической деформации определяется (ограничен сверху) объемом, рднрродно заполненным дислокациями. При нагружении возникают мезодефекты — конфигурации неоднородных дисг локаций. В ансамбле дислокаций в силу неоднородности реализуемого процесса деформации по мере удаления от вершины усталостной трещины и вдоль фронта трещины, а также в силу различий, связанных с разными ветвями нагружения и разгрузки, возникают ротационные моды. Частичные дисклинации фрагментируют зону на ряд разориентированных областей с увеличением размера фрагмента вплоть до 2,10 м [57, 58, 65]. Этр представление о процессе накопления дефектов в пределах зоны пластической деформации подтверждается статистическим анализом размеров ячеек дислокационной структуры [78]. Результаты нализа распределения размеров ячеек дислокационной структуры по размерам после выполненных испытаний сплава Fe-Si с постоянной деформаг цией показали, что средний размер ячейки близок  [c.148]

Важно подчеркнуть, что пороговая величина скорости роста усталостной трещины получена равной Vis 2,5-10 м/цикл, что близко к статистически среднему размеру ячейки дислокационной структуры на границе перехода в процессе пластической деформации от мезоуровня I к мезо-уровню II (см. главу 3). Указанные данные по монотонному растяжению образцов подтверждаются результатами экспериментальных исследований сталей в области малоцикловой усталости при постоянном уровне пластической деформации [61]. В испытанных образцах исследовали дислокационную структуру, оказалось, что фрагментированная дислокационная структура представляет собой ячейки и стенки дислокаций. Выполненный статистический анализ размеров фрагментов показал, что при всех уровнях циклической пластической деформации размер ячейки (1,5-2,0) 10 м встречается наиболее часто (см. рис. 3.13). Важно подчеркнуть, что с возрастанием длительности нагружения до разрушения относительная частота формирования ячеек или стенок с указанным размером также возрастает. Это дает основание полагать, что прирост усталостной трещины в пределах указанного размера контролируется одним механизмом разрушения, а далее происходит усложнение механизма разрушения, что должно иметь отражение в кинетическом процессе и описывающих этот процесс кинетических уравнениях.  [c.193]


Смотреть страницы где упоминается термин Ячейка деформация : [c.80]    [c.337]    [c.159]    [c.170]    [c.223]    [c.250]    [c.255]    [c.117]    [c.159]    [c.173]    [c.176]    [c.177]    [c.177]    [c.218]   
Физические основы ультразвуковой технологии (1970) -- [ c.70 , c.82 ]



ПОИСК



Деформация остаточная размер ячейки



© 2025 Mash-xxl.info Реклама на сайте