Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поглощение звука в твёрдых телах

Поглощение звука в твёрдых телах, вообще, и в высокомолекулярных, в частности, можно измерить, пользуясь составным вибратором [81]. При частотах, больших и меньших резонансной частоты, амплитуда колебаний вибратора уменьшается по сравнению с амплитудой, соответствующей резонансу.  [c.108]

Поглощение звука в твёрдых телах  [c.781]

Поглощение звука в твёрдых телах может быть вычислено совершенно аналогично тому, как вычисляется коэффициент поглощения в жидкостях 1). Произведём здесь соответствующие вычисления для изотропного тела. Обусловленная теплопроводностью часть диссипации энергии ( мвх) определяется интегралом  [c.781]


ПОГЛОЩЕНИЕ ЗВУКА В ТВЁРДЫХ ТЕЛАХ 785  [c.785]

Эффекты акустоэлектронного взаимодействия. На опыте АЭВ проявляется либо непосредственно как эффект увлечения носителей заряда акустич. волной, либо в виде зависимости параметров акустич. волны (её скорости, коэф. поглощения и др.) от концентрации носителе проводимости, величины внеш. электрич. и магн. полей. АЭВ — одна из причин дисперсии звука в твёрдых телах. Получая в процессе АЭВ энергию, электроны рассеивают её при столкновениях с дефектами и тепловыми фононами, обусловливая электронное поглощение УЗ. Зависимость коэф. поглощения от частоты при этом может отличаться от квадратичной, предсказываемой классич. теорией (см. Поглощение звука). В полупроводниках в сильном электрич. поле поглощение звука сменяется его усилением. Усиление электрич. иолом НЧ-фононов (акустич. шумов) приводит к развитию электрич, неустойчивости в полупроводниках и возникновению акустоэлектрических доменов. АЭВ является источником электронной акустич. нелинейности, к-рая обусловливает зависимость от электронных параметров амплитуд акустич. волн, возникающих в результате нелинейного взаимодействия, эффекты электроакустического эха в полупроводниках и др.  [c.56]

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Упругие волны могут распространяться не только в газах и жидкостях, но и в твёрдых телах. При этом в однородных твёрдых телах (в большинстве металлов — в железе, стали, алюминии) условия распространения упругих волн более благоприятны, чем, например, в воздухе звук распространяется в металлах на большие расстояния, испытывая гораздо меньшее поглощение.  [c.349]

При наличии релаксационных процессов энергия поступательного движения молекул в звуковой волне перераспределяется на внутренние степени свободы. При этом появляется дисперсия скорости звука, а зависимость коэфф. поглош,ения на длину волны от частоты имеет в этом случае максимум на нек-рой частоте, наз. частотой релаксации. Величина дисперсии скорости звука и величина максимального коэфф. поглощения зависят от того, какие именно степени свободы возбуждаются под действием звуковой волны, а частота релаксации, равная обратному значению времени релаксации, связана со скоростью обмена энергией между различными степенями свободы. Т. о., измеряя скорость звука и поглощение в зависимости от частоты можно судить о характере молекулярных процессов и о том, какой из этих процессов вносит основной вклад в релаксацию. Этими методами можно исследовать возбуждение колебательных и вращательных степеней свободы молекул в газах и жидкостях, процессы столкновения молекул в смесях различных газов, установление равновесия при химич. реакциях, перестройку молекулярной структуры в жидкостях, процессы сдвиговой релаксации в очень вязких жидкостях и полимерах, различные процессы взаимодействия звука с элементарными возбуждениями в твёрдых телах и др.  [c.220]

В М. а. для исследований обычно применяются акустич. волны высокой частоты в газах УЗ — в диапазоне частот 104—10 Гц, а в жидкостях и в твёрдых телах — в диапазоне 10 — 10 Гц. Это связано как с локализацией областей релаксации в этих частотных диапазонах, так и с высоким развитием техники излучения и приёма УЗ и с большой точностью измерений в этом диапазоне частот. На более высоких частотах поглощение звука становится очень большим и многие акустич. методы неприменимы.  [c.220]

В М. а. для исследований обычно применяется УЗ- и гиперзвуковые волны в газах — в диапазоне частот Ю Гц, а в жидкостях и твёрдых телах — в диапазоне 10 —10 Гц. Использование оптич. методов, а именно измерение смещения и ширины компонент Мандельштама — Бриллюэна рассеяния и определение по ним скорости и коэф. поглощения звука, позволило расширить диапазон применяемых частот вплоть до десятков ГГц.  [c.194]

Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика). Характерная особенность распространения У. в многоатомных газах и во мн. жидкостях—существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот.  [c.215]

По скорости звука можно определить сжимаемость, отношение теплоёмкостей, модули упругости твёрдого тела и др., а по поглощению звука — коэфф. сдвиговой и объёмной вязкости, время релаксации и др. В газах, измеряя скорость звука и её зависимость от темп-ры, определяют параметры, характеризующие взаимодействие молекул газа при столкновениях. В жидкости, вычисляя скорость  [c.219]


Широкое распространение получили методы С., основанные на изучении затухания и, в частности, по- глощения звука. Для большинства жидкостей и газов характерна квадратичная зависимость коэфф. поглощения звука от частоты. Отклонение от этого закона, как правило, связано с наличием релаксационных процессов (см. Релаксация), возникновение к-рых обусловлено переходом энергии с одной степени свободы на другую. В гетерогенных средах, а также в поликристаллич. твёрдых телах с размерами структурных неоднородностей порядка длины волны определяющим механизмом затухания УЗ-вых колебаний при их распространении является рассеяние звука. Частотная зависимость затухания в этом случае имеет сложный характер, и коэфф. затухания может быть пропорционален различной степени частоты (в зависимости от соотношения размеров неоднородностей и длины волны), вплоть до четвёртой.  [c.331]

Максимумы скорости звука в растворах, природа 210 Метод измерения изменений скорости звука 79 Методы измерения скорости и поглощения ультразвука в газах, жидкостях и твёрдых телах 62, 224 и д.  [c.321]

Поглощение звука в твёрдых телах. В твёрдых телах П. з. различно для продольных и сдвиговых волн. Это связано как с различием скорости звука для этих волн, так и с тем, что в П. 3. для продольной и сдвиговой волн могут давать вклад различные механизмы. Для определения коэфф. поглощения в твёрдом теле, как правило, не пользуются ф-лой (1), т. к. в П. 3. здесь могут давать вклад многие механизмы, не укладывающиеся в простую схему, на основании к-рой выведена эта ф-ла. П. з. в твёрдых телах определяется в основном внутренним трением и теплопроводностью среды, а на высоких частотах и при низких темп-рах — различными процессами взаимодействия УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдом теле, такими, как тепловые колебания решётки, электроны, спиновые волны и пр. На поглощение сдвиговых волн в однородных твёрдых телах теплопроводность и другие объёмные эффекты не влияют, т. к. сдвиговые волны не связаны с пзменением объёма.  [c.260]

Разработанные в настоящее время точные методы измерения поглощения звука в твёрдых телах приведут в ближайшее время к широкому использованию подобного рода измерен1 й для изучения различных свойств, твёрдых тел.  [c.252]

МОЛЕКУЛЯРНАЯ АКУСТИКА — раздел физ. акустики, в к-ром структура и свойства вещества и кинетика молекулярных процессов исследуются акустич. методами. Осн. методы М. а.— измерения скорости, звука и козф. поглощения звука в зависимости от разл. физ. параметров частоты звуковой волны, темп-ры, давления, маги, поля и др. величин. Исследования, проводимые такими методами, иногда объединяют в особый раздел экснерим. акустики — ультразвуковую или акустическую спектроскопию. Методами М. а. можно исследовать газы, жидкости, полимеры, твёрдые тела, плазму. На ранней стадии развития этой области и в нек-рых случаях до сих пор термин М. а. применяют лишь к исследованиям молекулярной структуры газов а жидкостей.  [c.193]

Н. а. занимает промежуточное место между линейной теорией звука и теорией ударных волн. Предметом её исследований являются слабо нелинейные волны, в то время как ударные волны, как правило, сильно нелинейны в классич. же акустике нелинейные эффекты не рассматриваются вообще. Н. а. близка к нелинейной оптике и др. разделам физики нелинейных волн. К осн. вопросам, к-рыми занимается совр. Н. а., относятся распространение волн конечной амплитуды, звуковые пучки большой интенсивности и их самовоздей-ствие, нелинейное поглощение и взаимодействие волн, особенности нелинейного взаимодействия в твёрдых телах, генерация и распространение интенсивных шумов, усреднённые э екты в звуковом поле, акустич. кавитация и др.  [c.288]

Простейший видР. а.— релаксация внутримолекулярного возбуждения, или квеэеровская релаксация. Такая Р. а. происходит, напр., в двухатомных и многоатомных газах, где энергия поступат. движения молекул в звуковой волне переходит в энергию, связанную с колебат. и вращат. степенями свободы молекул, т. е. изменяется заселённость вращат. и колебат. уровней. Др. виды Р. а. структурная релаксация в жидкостях, при к-рой акустич. волна инициирует изменение ближнего порядка в расположении молекул жидкости хим. релаксация, при к-рой под действием звука сдвигается равновесие в хим. реакции. В твёрдом теле звуковая волна нарушает равновесное распределение фононов, что приводит к релаксац. процессам, определяющим решёточное поглощение звука. Один из видов Р. а. в твёрдом теле — релаксация разл. дефектов кристаллической решётки — как точечных, так и линейных дислокаций), связанная с движением дефектов под действием механич. напряжений в упругой волне. При распространении звука в полупроводниках и металлах нарушается равновесное распределение электронов проводимости, что также приводит к релаксации, а следовательно, к дополнит, поглощению звука.  [c.328]

Заключение. Концепция Ф. (как и др. квазичастиц) помогает описать мн. свойства твёрдых тел, используя представления кинетич. теории газов. Так, решеточная тепло-проводностъ кристаллов для неметаллов — это теплопроводность газа Ф., длина свободного пробега к-рых ограничена фонон-фононным взаимодействием, а также дефектами кристаллич. решётки при низких темп-рах (границами образца). Поглощение звука в кристаллич. диэлектриках—результат взаимодействия звуковой волны с тепловыми Ф. В аморфных (в т. ч. стеклообразных) телах Ф. удаётся ввести только для длинноволновых акустич. колебаний, мало чувствительных к взаимному расположению атомов и допускающих континуальное описание твёрдого тела (см. Упругости теория).  [c.339]


Особенностью УЗ в высокочастотном и гиперзвуковом диапазонах является возможность применения к нему представлений и методов квантовой механики, поскольку длины волн и частоты в этих диапазонах становятся одного порядка с параметрами и частотами, характеризующими структуру вещества. Упругой волне данной частоты при этом сопоставляется квазичастица — фонон, или квант звуковой энергии. Квантово-механич. представления удобны при рассмотрении различных взаимодействий в твёрдых телах. Напр., рассеяние и поглощение звука колебаниями кристаллич. решётки можно рассматривать как взаимодействие когерентных и тепловых фононов, комбинационное рассеяние света (см. Манделъштама — Бриллюэна рассеяние) — как взаимодействие фотонов с фо-нонами, а взаимодействие с электронами проводимости в металлах и полупроводниках и со спинами и спиновыми волнами в магнитоупорядоченных кристаллах (см. Магнитоупругие волны) — соответственно как электрон-фо-нонное, спин-фононное и магнон-фононное взаимодействия.  [c.12]

УЗ-вые методы, основанные на измерениях скорости и затухания звука, широко используются в технике для определения свойств и состава веществ и для контроля технологич. процессов (см. Контрольно-измерительные применения ультразвука). По скорости звука определяют упругие и прочностные характеристики металлич. материалов, керамики, бетона, степень чистоты материалов, наличие примесей. Измерения скорости и поглощения в жидкостях позволяют определить концентрацию растворов, следить за протеканием химич. реакций и других процессов, за ходом полимеризации. В газах измерения скорости звука дают информацию о составе газовых смесей. При УЗ-вых измерениях в твёрдых телах используют частоты 10 —10 Гц, в жидкостях — до 10 Гц, в газах — не выше 10 Гц выбор частотных диапазонов соответствует поглощению УЗ в этих средах. Точность определения состава веществ, концентрации примесей УЗ-выми методами высока и составляет доли процента. По изменению скорости звука или по Доплера эффекту в движущихся жидкостях и газах определяют скорость их течения (см. Расходомер). Для исследования свойств веществ используют также методы, основанные на зависимости параметров резонансной УЗ-вой колебательной системы от акустич. сопротивления нагрузки, т. е. от свойств нагружающей её среды. Это т. н. импедансные методы, к-рые применяются в УЗ-вых сигнализаторах уровня, вискозиметрах, твердомерах и т. д. Во всех перечисленных методах измерений и контроля свойств вещеегв применяются весьма малые интенсивности УЗ эти методы требуют малого времени для измерений, легко поддаются автоматизации, позволяют производить дистанционные измерения в агрессивных и взрывоопасных средах и осуществлять непрерывный контроль веществ в труднодоступных местах.  [c.17]

В твёрдых телах Д.с. з. появляется обычно тогда, когда акустич. волна взаихмодействует с к.-л. видами внутренних возбуждений п под её действием возникает изменение состояния электронов, системы спинов, спиновых волн или любой другой системы. Так, напр., при распространении звука в полупроводнике, обладающем пьезоэффектом (напр., dS, ZnO), взаимодействие звуковых волн с электронами проводимости приводит к Д. с. 3. и к поглощению релаксационного типа (а при нек-рых условиях — к усилению звука, см. Усиление ультразвука). Величина Д. с. 3. в этОхМ случае определяется величиной коэффициента электромеханической связи К для данного материала A I q I Положение области частот, в к-рой имеется дисперсия, определяется условием  [c.122]

Скорость звука с определяется структурой среды и взаимодействием между молекулами, поэтому измерения её величины дают сведения о равновесной структуре жидкостей и газов. По скорости звука можно определить адиабатич. сжимаемость вещества, отношение темплоёмкостей, модули упругости твёрдого тела и др. Данные измерения скорости звука позволяют судить о составе газовых и жидких смесей, в т. ч. и растворов. Данные по поглощению звука позволяют определять коэф. сдвиговой н объёмной вязкости, времена релаксации и др. параметры.  [c.193]

Др. особенность У.—возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропори, квадрату частоты, УЗ-волны большой интенсивности сопровождаются рядом нелинейных эффектов. Так, для интенсивных плоских УЗ-волн при малом поглощении среды (особенно в жидкостях, твёрдых телах) синусоидальная у излучателя волна превращается по мере её распространения в слабую периодич. ударную волну (пилообразной формы) поглощение таких волн оказывается значительно больше (т. н. нелинейное поглощение), чем волн малой амплитуды. Распространению УЗ-волн в газах и жидкостях сопутствует движение среды, т. н. акустическое течение, скорость к-рого зависит от вязкости среды, интенсивности У. и его частоты вообще говоря, она мала и составляет долго % от скорости У. К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавито1(ия. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости и степени её чистоты, частоты звука, темп-ры и др. факторов в водопроводной воде, содержащей пузырьки воздуха, на частоте 20 кГц она составляет доли Вт/см . На частотах диапазона У. средних частот в УЗ-поле с интенсивностью начиная с неск. Вт/см могут возникнуть фонтанирование жидкости и распыление её с образованием весьма мелкодисперсного тумана. Акустич, кавитация широко применяется в технол. процессах при этом пользуются У. низких частот.  [c.215]

Наблюдение показывает, что когда стержень сделан из стали или из алюминия, резонанс получается очень острым достаточно незначительно изменить частоту генератора,, как амплитуда колебаний, видимая на осциллографе, резко падает. Для стержня из свинца или эбонита резонанс гораздо менее резок. Причина этого состоит в том, что в стали и алюминии продольные волны ргспространяются с очень малым затуханием, в свинце же и в эбоните затухание достаточно велико. Различные твёрдые тела обладают различной способностью поглощать упругие волны. Колокол, сделанный из меди, стали или чугуна, после удара звучит продолжительное время. Такого звучания не получится, если сделать колокол, например, из свинца резиновый колокол не дал бы вообще никакого звучания. Из металлов меньше всего звук поглощается в алюминии. В железе поглощение продольных упругих волн примерно в 12 раз больше, чем в алюминии, в стали в 50 раз, в меди — в 70, в стекле — в 130, в пробке — в 8500 и в резине— в 13 000 раз.  [c.364]

До того как стало возможным получать Г. искусственным путём, изучение гиперзвуковых волн и их распространение в жидкостях и твёрдых телах проводилось гл. обр. оптич. методом, основанным на исследовании рассеяния света на Г. теплового происхождения. При этом было обнаружено, что рассеяние в оптически прозрачной среде происходит с образованием нескольких спектральных линий, смещённых относительно частоты падающего света на частоту Г. (т. н. М анделъштама — Бриллюэна рассеяние). Исследования Г. в ряде жидкостей привели к открытию в них зависимости скорости распространения Г. от частоты (см. Дисперсия скорости Звука) и аномального поглощения звука на этих частотах. Изучение Г. теплового происхождения рентгеновскими методами показало, что тепловые колебания атомов в кристалле приводят к диффузному рассеянию рентгеновских лучей, размазыванию пятен, обусловленных взаимодействием рентгеновских лучей с атомами, и к появлению фона. По диффузному рассея-  [c.87]


Ультраакустические измерения позволяют исследовать поведение твёрдых тел при весьма низких температурах. Недавно были произведены измерения скорости продольных и сдвиговых волн в твёрдом Ве в [1нтервале температур для продольных волн от 300° К до 23° К и для сдвиговых от 300° К до 3° К [241]. Одной из причин, побудивших исследовать именно Ве, являлось то, что его теплоёмкость имеет аномальный ход в интервале температур от 10° К до 14° К. Можно было ожидать, что эта аномалия будет сопровождаться аналогичной аномалией в изменении поглощения и скорости звука.  [c.246]


Смотреть страницы где упоминается термин Поглощение звука в твёрдых телах : [c.70]    [c.130]    [c.194]    [c.15]    [c.149]    [c.170]    [c.219]    [c.98]    [c.106]    [c.781]    [c.477]    [c.207]    [c.14]    [c.780]   
Смотреть главы в:

Теоретическая физика. Т.7. Теория упругости  -> Поглощение звука в твёрдых телах

Ультразвук и его применение в науке и технике Изд.2  -> Поглощение звука в твёрдых телах

Механика сплошных сред Изд.2  -> Поглощение звука в твёрдых телах


Ультразвук (1979) -- [ c.260 ]

Ультразвук и его применение в науке и технике Изд.2 (1957) -- [ c.397 ]



ПОИСК



О поглощении звука конечной амплитуды в твердых телах

Поглощение

Поглощение звука

Поглощение звука в жидкости в твёрдом теле

Поглощение звука в твердых телах влияние магнитного поля

Поглощение звука в твердых телах частотная зависимость

Поглощение звука в твердых телах человеческого тела

Поглощение и скорость звука в твердых телах

Скорость звука. Нелинейные механические характеристики жидкостей. Поглощение звука в жидкостях Распространение звука в твердых телах



© 2025 Mash-xxl.info Реклама на сайте