Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметрические Связь с задачами динамической

Задачи динамической устойчивости упругих систем. -Большая часть задач параметрических колебаний упругих систем связана с теорией упругой устойчивости. Примером служат колебания упругого прямолинейного стержня, нагруженного периодической во времени продольной силой (рис. 6, й).  [c.245]

Некоторые проектирующие подсистемы ПО для решения задач высокой размерности требуют больших затрат машинного времени и ОП, например задачи анализа сложных динамических объектов, их параметрическая оптимизация, синтез тестов для цифровых устройств, трассировка печатных плат и т. д. Использование интерактивного режима на этапе счета таких задач нецелесообразно, но он необходим на подготовительных стадиях и при интерпретации результатов. Для таких случаев в составе ПО САПР необходимо иметь обслуживающую подсистему образования фоновых заданий. Если САПР функционирует на вычислительной установке, имеющей связь с другими ЭВМ, то такая подсистема должна обеспечивать возможность передачи фоновых заданий на одну из этих ЭВМ. После завершения фонового задания его результаты могут быть просмотрены и обработаны пользователем средствами проектирующей подсистемы ПО, породившей это задание.  [c.30]


При применении в качестве динамических корректирующих устройств различных упругих и упруго-фрикционных муфт их параметры, оптимальные относительно принятых динамических критериев качества, устанавливаются в результате решения задачи параметрического синтеза крутильной системы с корректирующим устройством. Рассеяние энергии в муфтах обеспечивается обычно за счет фрикционных связей сухого трения между ведущей и ведомой частями муфты. Обобщенная упругая характеристика таких муфт представлена петлевой кусочно-линейной зависимостью F(a) с шириной петли 2F , где F — упругий момент, а — относительное крутильное смещение ведущей и ведомой частей муфты, Fr — момент сухого трения в муфте (рис. 89, а). Рабочая точка характеристики, соответствующая рассматриваемому равно-  [c.296]

Разрывая некоторые связи при переходе к нестационарным формам колебаний, мы тем самым исключаем из рассмотрения инерционные составляющие, возникающие при изменении форм колебаний. Однако Связанность различных форм в рассматриваемом классе задач обычно оказывается достаточно слабой. К тому же при расчете принудительное разделение форм приводит, как правило, в основных зонах параметрического возбуждения к повышению запаса динамической устойчивости [91.  [c.262]

Полученная система уравнений динамической устойчивости в отличие от системы уравнений движения (2.79), используемой для расчета частот собственных колебаний кинематически неоднородней Л1-СЛОЙНОЙ оболочки, позволяет решать задачи о параметрических колебаниях [13] упомянутых оболочек, если исходное напряженное состояние, определяемое так называемыми параметрическими усилиями Яij ( , = х, у), изменяется во времени. В этой связи необходимо отметить следующее. Развитие устойчивых параметрических колебаний оболочки вследствие периодически изменяющегося во времени внешнего воздействия можно, очевидно, интерпретировать как результат перехода конструкции из равновесного состояния вынужденных колебаний в смежное ему состояние режима параметрического самовозбуждения конструкции.  [c.110]

Виртуальное варьирование предполагает использование виртуальных перемещений, определяющих свойства реакций связей. Таким путём применение операций вариационного исчисления при варьировании функционала действие увязывается с физическим смыслом учитываемых ограничений. Вспомогательный характер имеет заметка 7 о дифференцировании функции при неявной зависимости от переменных и о вариационной производной. Способы синхронного, асинхронного варьирования и способ, применённый Гельмгольцем (и его расширение), а также варьирование в скользящих режимах реализации связей рассматриваются в заметке 8. В заметке 9 обсуждается составление уравнений для виртуальных вариаций неголономной связи связи, представляющей огибающую связи, зависящей от двух независимых параметров неравенства для виртуальных перемещений при неудерживающих связях. В одном из пунктов заметки 10 полностью содержится (с нашим примечанием) двухстраничная работа М. В. Остроградского Заметка о равновесии упругой нити , написанная им по поводу одной известной классической ошибки Лагранжа в других пунктах рассматривается использование неопределённых множителей при представлении реакций связей. Некоторое ограничение множества виртуальных перемещений позволило сформулировать обобщение принципа наименьшей кривизны Герца для систем с нестационарными связями (заметка 11). Несвободное движение систем с параметрическими связями (заметка 12) изучается на основе принципа освобождаемости по Четаеву, сформулированному им в задаче о вынужденных движениях составлено общее уравнение несвободных динамических систем, основные уравнения немеханической части которых имеют первый порядок (в отличие от механической части, основные уравнения которой второго порядка), предложено общее уравнение динамики систем со случайными параметрами. Центральное вириальное равенство (заметка 13) выводится с помощью центрального уравнения Лагранжа.  [c.13]


Решение задач оптимального параметрического синтеза машинных агрегатов по критериям динамической нагруженности элементов силовой цепи и устойчивости системы автоматического регулирования скорости двигателя, а также задачи частотной отстройки и других на основе изложенных в 15 подходов связано с необходимостью выполнения многовариаптных расчетов собственных спектров оптимизируемых моделей. В таких задачах решение проблемы собственных спектров параметрически варьируемых моделей представляет собой основную по вычислительной трудоемкости процедуру, особенно для расчетных моделей большой размерности. Эффективный систематический алгоритм решения указанной проблемы параметрического синтеза можно построить на основе эквивалентных структурных преобразований сложных динамических моделей (см. гл. III).  [c.259]

Аналогично изложенному можно представить в виде совокупности задач линейного программирования задачу параметрической оптимизации динамической модели с направленными связями но критерию эффективности (15.18). Ограниченное т-мерное пространство варьируемых параметров районируется в соответствии с выражениями (16.30). В каждой локальной области варьирования действительные части собственных значений расчетной динамической модели, принимая во внимание зависимости (16.32), представим в виде, аналогичном (17.7)  [c.276]

Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = onst результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике.  [c.219]


Смотреть страницы где упоминается термин Параметрические Связь с задачами динамической : [c.321]    [c.170]    [c.276]   
Прочность Колебания Устойчивость Т.3 (1968) -- [ c.0 ]



ПОИСК



Задачи динамические

Ряд параметрический

Связь динамическая



© 2025 Mash-xxl.info Реклама на сайте