Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочка в магнитном поле

В классической небесной механике теория движения небесных тел около центра масс развивалась применительно к конкретным телам (Луна, Земля) [94], что позволило сделать ряд упрощений, отсутствующих в общем случае при этом рассматривалось в основном влияние гравитационных моментов. Сложность задачи о вращательном движении искусственных космических объектов обусловливается произвольностью формы и распределения масс объекта, произвольностью начальных данных, многочисленностью факторов, влияющих на движение. Кроме гравитационных моментов следует учитывать еще аэродинамические и электромагнитные моменты, диссипативные эффекты, связанные с трением оболочки спутника об атмосферу и взаимодействием металлической оболочки с магнитным полем Земли влияние эволюции орбиты спутника, влияние моментов сил светового давления на космический объект, движущийся по межпланетной орбите, и т. д. Отметим также,  [c.10]


Вихревые токи возникают в оболочке при вращении спутника в магнитном поле. Относительно момента сил, который вызывается вихревыми токами, можно сделать следующие весьма оправданные предположения  [c.48]

В ферромагнетике при температурах ниже температуры Кюри все спиновые моменты атомов с недостроенными ё- или Г-оболочками (электронными подуровнями) ориентируются параллельно друг другу. В результате этого намагниченность (4.3) макроскопического образца должна быть близка к намагниченности насыщения. Однако опыт обычно показывает размагниченное состояние ферромагнитных тел. При помещении такого образца в магнитное поле результирующий магнитный момент возрастает и В достаточно слабых полях достигает насыщения. Объяснение этому эффекту было дано П. Вейссом, который предположил, что при отсутствии поля кристалл разбивается на магнитные области - домены - размером 10 м (рис. 4.6), где  [c.284]

Следует подчеркнуть, что полностью микроскопический подход к исследованию энергетического спектра электронов в твердом теле связан с чрезвычайными математическими трудностями обш,его характера, не специфичными именно для многоэлектронной задачи. Эти трудности возникают и в обычной одноэлектронной теории и связаны с необходимостью решения задачи о движении одного электрона в периодическом поле идеальной решетки. Дело в том, что обычно в коллектив электронов, определяющих электрические, магнитные и др. свойства твердого тела, естественно включать электроны не всех вообще, а лишь одной-двух внешних атомных оболочек. Конкретное разделение на коллектив электронов и атомные остовы зависит, естественно, от природы вещества и характера задачи (см. ниже). Однако вид электронной плотности даже в изолированном атоме обычно не удается представить в простой аналитической форме. В результате приходится либо апеллировать к более или менее грубым приближенным методам, либо иметь дело с уравнением неизвестного вида. По этой причине представляется целесообразным вообще отказаться от полного вычисления энергетического спектра электронов в идеальной решетке, определяя его параметры из опыта. В полупроводниках для этой цели удобно использовать, например, явление циклотронного (диамагнитного) резонанса [2], [3] в металлах успех сулит использование гальваномагнитных данных [1] и исследование поглощения ультразвука в магнитном поле [4]. Динамическая теория при этом должна давать ответ на следующие вопросы  [c.158]


В соответствии с поведением в магнитном поле различают несколько классов веществ. Вещества с отрицательной магнитной восприимчивостью (т. е. коэффициентом пропорциональности между намагниченностью образца и напряженностью внешнего магнитного поля) называют диамагнетиками. Отвечающее этому знаку восприимчивости выталкивание вещества из магнитного поля обусловлено экранирующим влиянием замкнутых внутренних электронных оболочек. Если вещество содержит постоянные магнитные диполи, его называют парамагнетиком, этим свойством обладают, например, вещества, атомы или молекулы которых имеют неспаренные электроны (свободные атомы натрия, окись азота, жидкий кислород, свободные радикалы, атомы или ионы с частично заполненными внутренними электронными оболочками, как, например, у переходных металлов). Магнитная восприимчивость парамагнетиков положительна, что обусловлено  [c.80]

В случае сильного внешнего поля связь магнитного момента ядра с магнитным полем валентных электронов нарушается и ядер-ный момент и момент электронной оболочки ориентируются относительно внешнего поля Н независимо друг от друга в соответствии  [c.120]

В первом случае благодаря действию сильного внешнего поля связь магнитного момента ядра с магнитным полем валентных электронов нарушается, и электронная оболочка и ядерный момент ориентируются относительно внешнего лоля Н независимо друг от друга в соответствии со своими собственными моментами  [c.70]

Вещества с отрицательной магнитной восприимчивостью называют диамагнитными (xv<0). Причиной диамагнетизма является электромагнитная индукция молекулярных токов, вызываемая в электронных оболочках атомов внешним магнитным полем. Явление диамагнетизма присуще всем веществам без исключения.  [c.593]

На основании этой схемы сложения моментов можно произвести следующий расчет. Электронная оболочка атома создает в месте, где находится ядро, определенное магнитное поле, напряженность которого обозначим через Н(0). Направление поля (в среднем по времени) совпадает с направлением результирующего момента электронной оболочки Ядро, имеющее механический момент и магнитный момент ly, в силу правил пространственного квантования может ориентироваться лишь определенным числом способов относительно направления поля Н(0). Добавочная энергия, соответствующая этим различным ориентациям момента jiy относительно электронной оболочки, равна  [c.522]

Из формулы (6) видно, что для определения величины сверхтонкого расщепления уровней надо знать магнитный момент ядра ij и вычислить значение напряженности магнитного поля Н (0), вызванного электронной оболочкой в месте, где находится ядро.  [c.522]

Рассмотренная в предыд,ущем параграфе векторная схема сама по себе не касается природы сил взаимодействия электронной оболочки атома с его ядром. Лишь правило интервалов указывает на магнитный характер этого взаимодействия. Более непосредственно он сказывается на поведении линий со сверхтонким строением во внешнем магнитном поле, т. е. при эффекте Зеемана.  [c.533]

Среди молекул имеется значительное число находящихся в нормальном состоянии 41 и, следовательно, не обладающих магнитным моментом, обусловленным электронной оболочкой, В сильном внешнем магнитном поле связь между ядерными моментами разрывается, и момент каждого из ядер самостоятельно ориентируется по отношению к направлению поля. При этих условиях молекула ведет себя как совокупность несвязанных ядер, и, следовательно. для каждого из ядер метод Раби должен обнаружить присущее ему резонансное значение отношения v/Zf . Правда, прецессируя во внешнем магнитном поле, молекула должна дать диамагнитный эффект, который оказывает некоторое влияние на значение магнитных моментов ядер. Но, во-первых, этот эффект мал (не больше 7%), а, во вторых, он может  [c.572]


Энергия термоядерных реакций в плазме из ядер дейтерия и трития в основном передается быстрым нейтронам. Для преобразования этой энергии в тепловую плазменное кольцо нужно окружить специальной оболочкой толщиной около метра — бланкетом. В бланкете нейтроны будут замедляться и отдавать энергию теплоносителю. Исследования процессов, протекающих при слиянии тяжелых ядер водорода, ведутся на различных установках. Наибольшие результаты в решении этой проблемы достигнуты на советской установке Токамак. Эту установку можно сравнить с трансформатором, у которого вторичная обмотка выполнена в виде замкнутого (полого) кольца — тора. Заполнение кольцевой камеры дейтерием осуществляется при глубоком вакууме. При пропускании тока по первичной обмотке в камере происходит пробой в газе, газ ионизируется и протекающий по нему ток нагревает его до высокой температуры. Возникающее магнитное поле удерживает плазму от соприкосновения ее со стенками, предохраняя последние от разрушения под воздействием высокой температуры. Для стабилизации плазмы создается дополнительное магнитное поле, образуемое катушками, расположенными вдоль тора.  [c.194]

Данные по радиоизотопам, применяющимся для построения приборов автоматического контроля, приведены в табл. 27. Важным свойством источников ядерных излучений является отсутствие какого-либо влияния внешних условий (давления, температуры, электрического и магнитного полей и т. д.) на активность и энергию излучения. Причиной этого является то, что радиоактивность обусловлена не процессами в электронных оболочках атома, где энергии взаимодействия имеют тот же порядок, что и энергии обычных физических явлений, а связана с явлениями, происходящими внутри атомного ядра, где энергии взаимодействия на 3—4 порядка выше.  [c.115]

Для обеспечения устойчивости плазменного шнура на наружной поверхности камеры размещаются магнитные катушки 2, создающие сильное магнитное поле, силовые линии которого параллельны току в плазме. В результате взаимодействия двух магнитных полей образуется коаксиальное магнитное поле со спиральными силовыми линиями 7. Оболочка-проводник удерживает плазменный шнур от расширения вдоль большого радиуса тора. Окно 3 предназначено для измерения параметров плазмы.  [c.258]

Выше нами было установлено, что в ферромагнетике при Г<0 все спиновые моменты атомов с недостроенными d- или /-оболочками ориентируются параллельно друг другу. Б результате этого намагниченность макроскопического образца должна быть близка к намагниченности насьицения. Опыт показывает, однако, что намагниченность случайно взятого куска ферромагнетика часто оказывается равной нулю. При помещении этого образца в магнитное поле результирующий магнитный момент возрастает и в достаточно слабых полях достигает насыщения.  [c.343]

Ланде для множителя g J), определяющего магнитный момент электронной оболочки атома, характеризуемого полным механическим моментом ( 64). Отступления от формулы Ланде могут быть вызваны Н либо тем, что не в точности выпол-Рис. 331. Расщепление в магнитном поле няется рессель-саундеровская связь  [c.576]

Корпус КА представляет собой то копроводящую оболочку. При движении КА в магнитном поле Земли в обшивке его корпуса наводятся электрические токи. Эти токи образуют результирующ,ий магнитный поток В, который, Бза,имодействуя с магнитным потоком Земли Be, обусловливает появление возмущающего момента Мм (рис. 1.5). Направление этого мом ента определяют, исходя из свойства магнитной стрелки занимать положение, совпадающее с  [c.8]

Одной из причин, вызывающих появление магнитного момента, является наличие токовых систем на спутнике и постоянных магнитов в приборах. Другой прйчиной появления магнитного поля является намагничивание оболочки спутника в магнитном поле Земли. В работах [7, 24] получены формулы для этих моментов, достаточно хорошо моделирующие истинную картину.  [c.18]

Радиоастрономические данные о распределении в Галактике источников радиоизлучения свидетельствуют о том, что наиболее мощными источниками являются галактические туманности — оболочки сверхновых звезд, к которым, например, относится крабовидная туманность в созвездии Тельца. Предполагается, что радиоизлучение представляет собой синхротронное (магнитотормозное) излучение релятивистских электронов, движущихся в магнитном поле этой туманности.  [c.291]

Парамагнитными являются М. с нечетным числом электронов во внешней оболочке, напр. N0 и любые свободные радикалы, а также М., содержащие атомы, парамагнетизм к-рых определяется строением незамкнутых внутренних электронных оболочек (переходные металлы и др.). Парамагнитная М. имоет постоянный магнитный момент магнитная восприимчивость соответствующего вещества зависит от темп-ры, т. к. тепловое движение препятствует ориентации магнитных моментов в магнитном поле. Парамагнетизм являотся важнейшей характеристикой М. свободных радика.пов. Наиболее чувствительным методом исследования парамагнетизма М. являотся парамагнитный резонанс (электронный), позволяющий устанавливать распределение электронов в парамагнитных  [c.283]

Диамагнетизм связан с изменением орбитального движения электро-ньв, которое происходит при помещении атомов в магнитное поле. Следует напомнить, что в замкнутом электрическом контуре магнитное поле индуцирует ток всегда в таком направлении, чтобы противодействовать изменению полного магнитного потока. Таким образом, электрический ток действительно обладает отрицательной восприимчивостью. Этот эффект вызывает диамагнетизм и имеет место также в системе зарядов, описываемой квантовой механикой. С другой стороны, парамагнетизм связан со стремлением постоянных магнитов располагаться в магнитном поле так, чтобы их дипольный момент был параллелен направлению поля. В атомных системах постоянный магнитный момент связан в простейших случаях со спииом электрона. Но может также существовать постоянный момент у незаполненной атомной оболочки, возникающий при комбинации спинового и орбитального моментов. Если система более устойчива, когда атомные диполи параллельны, го такая система при низких температурах будет ферромагнитной. При высоких температурах ферромагнетизм исчезает это явление подобно плавлению твёрдого тела, потому что иеферромагнитное состояние менее упорядоченное и имеет ббльшую итропию, чем ферромагнитное. Силы между упорядоченными магнитными моментами в ферромагнитных веществах не похожи иа магнитные силы между диполями, а, как мы увидим в 143, имеют электростатическое происхождение.  [c.605]


Обратимся теперь к главному вектору внешних сил / внеш-Будем различать главный вектор объемных сил / обп,ем. т. е. сил, действующих на находящиеся внутри объема W точки и обусловленных воздействием материи, расположенной вне этого объема (например, через гравитационные, магнитные и т. п. поля), и главный вектор оболочки сил, обусловленных действием ограничивающей объем W оболочки на частицы материи, находящиеся внутри объема и непссредственно примыкающие к этой оболочке, в тех случаях, когда оболочка не является абсолютно проницаемой. Таким образом,  [c.113]

Первый опыт по обнаружению взаимодействия нейтрона с электронами был поставлен в 1947 г. Ферми. В качестве вещества для исследования был выбран благородный газ ксенон, электроны которого замыкают оболочку и, следовательно, не создают результирующего магнитного поля. Ксенон облучался тепловыми нейтронами, которые выводились из тепловой колонны реактора в виде хорошо сколлимированного пучка.  [c.265]

Область применения КЭД — расчет электронных оболочек атомов, спектров излучения и поглощения света атомами, рассеяние рентгеновского излучения, движение заряженных частиц в электрическом и магнитном полях, рассеяние электрона на электроне или позитроне и т. д. Выдающимся успехом квантовой электродинамики является объяснение отклонения магнитного момента электрона от предсказьлваемых классической электродинамикой значений.  [c.179]

Новая стадия в исследованиях по магнетизму наступила лишь после того, как было получено достаточное количество данных при низких температурах. В этой связи мы прежде всего отметим предположение Беккереля [2]пБрю-нетти [3], заключающееся в том, что отклонения от свойств свободных магнитных диполей связаны с воздействием на магнитный ион неоднородных электрических полей окружающих ионов. В общем виде эта идея была развита Бете [4], который пришел к выводу, что указанные ноля могут частично или полностью снимать вырождение энергетических уровней свободных магнитных ионов. Крамере [5] показал, что в случае иопов с нечетным числом электронов в незаполненной оболочке, обусловливающей магнитные свойства, неоднородные электрические ноля не могут полностью снимать вырождения. Уровни в этом случае должны быть по крайней мере дублетами (вырождение Крамерса). Такое вырождение может быть снято только шаг-  [c.382]

Магнитное поле (до 8000 э/ стеб), приложенное к Р, создавалось заключенным в железную оболочку соленоидом М . Соленоид охлаждался маслом, циркулирующим между витками. Подобные же магниты меньшего размера yi/j и Мз иснользовались для работы ключей. Они давали поле 1000 эрстед при токе, меньшем Та. Управление всеми тремя магнитами производилось автоматически при помощи часов, реле, реостатов, приводимых в движение моторами, и т. д.  [c.595]

Оксидированные порошки, проявляющие обменную анизотропию. Мелкие частицы кобальта, покрытые оболочкой из окиси кобальта, проявляют необычные магнитные свойства. Частицы диаметром 0,02 мкм были получены электроосаждением в ртути, поверхность их была окислена на воздухе, частицы охлаждались до низких температур в сильном магнитном поле. Эти частицы имели однонаправленную анизотропию (рис. 168). Петля гистерезиса смещена вдоль оси поля-, в результате чего коэрцитивная сила равна Яс = 294-10 дж/м (3700 э) в одном направлении и 39 800 а/м (500 э) в другом направлении (см. рис. 166), а максимальная энергия составляет 16 X  [c.236]

Парамагнитные вещества отличаются тем, что состоят из атомов с не полностью заполненными оболочками, т. е. обладающих магнитными млментами. Но такие атомы находятся друг от друга достаточно далеко, так что взаимодействие между ними отсутствует. Потому у парамагнетиков магнитные моменты атомов ориентируются в направлении внешнего магнитного поля и усиливают его.  [c.86]

Здесь //(0) — напряженность магнитного поля, вызванного электронной оболочкой в том месте, где находится ядро. Для того чтобы по эмпирическому значению расщепления ov найти надо знать величину Я(0). Точное значение ее может быть вычислено лишь для атома водорода и сходных с нйм ионов. Для атомных систем с более сложной электронной оболочкой/У (0) можно рассчитать, пользуясь соответствующими приближенными методами квантовой механики или, более грубо, на основании модельных полукласси-ческих представлений.  [c.542]

Успех опытов Штерна вызван тем, что, во-первых, магнитный момент электронной оболочки молекулы водорода в нормальном состоянии равен нулю, а, во-вторых, тем, что момент, связанный с вращением молекулы, доступен непосредственному измерению по отклонению пучка молекул параводорода. Вообще же говоря, магнитный момент ядра много меньше магнитного момента электронной оболочки [Ху и проявляется лишь в небольших поправочных членах, определяющих магнитное ращепление уровней ( 92). Магнитный момент ядра можно наиболее непосредственно обнаружить на расщеплении терма, для которого У=0 (например, терма Sq). Полный магнитный момент атома в состоянии с 7=0 совпадает с магнитным моментом ядра и, следовательно, по величине магнитного расщепления уровня с J=0 можно непосредственно найти множитель Ланде g I). Однако наблюдение обычного эффекта Зеемана на таких уровнях требует применения очень сильных магнитных полей до сих пор оно остается экспериментально не исследованным.  [c.568]

При повышенных требованиях к чистоте металла или при невозможности (в силу высокой температуры либо технологических причин) использования непроводящих тиглей применяют холодные тигли из проводящего материала. В этом случае тепловой поток при охлаждении металла пронизывает все поверхности его, соприкасающиеся с тиглем, и направлен по нормали к ним. Наличие холодной оболочки расплава способствует появлению по всей периферии последнего множества центров кристаллизации. В этих условиях направленнная кристаллизация по методу Бриджмена-Стокбергера невозможна. При плавке в холодном тигле ряда неметаллических материалов удается получить поликристаллический блок из крупных монокристаллов. Метод такой плавки разработан в Физическом институте им. П.Н. Лебедева АН СССР (ФИАН) и предусматривает создание градиента температуры в печи за счет наложения неоднородного магнитного поля индуктора. Этот метод позволил синтезировать новый класс монокристаллов — фианитов [2].  [c.114]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]


Механизм действия магнитного поля (создаваемого постоянным или электромагнитом) и переменного электрического тока, по-видимому, заключается в изменении степени гидратации ионов и деформации их электронной оболочки. Это вызывает резкое изменение структуры твердой фазы (СаСОз), которая при этом теряет способность кристаллизоваться на поверхностях нагрева и выпадает в виде мелкого шлама ( пудры ). Противокоррозионное действие этих способов водообработки пока остается неясным и недостаточно установлено.  [c.348]


Смотреть страницы где упоминается термин Оболочка в магнитном поле : [c.51]    [c.46]    [c.29]    [c.43]    [c.474]    [c.150]    [c.430]    [c.124]    [c.120]    [c.121]    [c.88]    [c.655]    [c.49]    [c.84]    [c.36]    [c.132]    [c.205]   
Общая теория анизотропных оболочек (1974) -- [ c.430 ]



ПОИСК



Поле магнитное

Поля магнитные

Флаттер цилиндрической оболочки в потоке сжимаемой проводящей жидкости в присутствии магнитного поля



© 2025 Mash-xxl.info Реклама на сайте