Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод корпускулярный

Последующий период состоит в накоплении новых, тонких экспериментальных фактов, открываемых благодаря прогрессу экспериментальных методов одновременно идет и развитие более углубленных теоретических представлений, связанных с созданием теории квантов. В этот период не только обосновываются корпускулярные воззрения наряду с установленными уже волновыми, но и возникают успешные попытки синтеза тех и других представлений.  [c.25]


Диалектическое противоречие между полевой и корпускулярной формами материи на уровне мышления выступает как противоречие между непрерывным и дискретным. Анализом этого противоречия занимались философы и ученые на продолжении всей истории интеллектуального развития человечества. Его содержание было выяснено в рамках диалектического метода. В физической реальности это противоречие снимается квантовым объектом, взятым в диалектическом единстве его противоположностей. Создание физической теории такого объекта, получившей название квантовой теории, является не только крупнейшим шагом в развитии физики, но и весьма важным событием в интеллектуальном прогрессе человечества, все последствия которого в настоящее время невозможно предугадать. Это становится очевидным, если вспомнить, что после создания квантовой механики многие даже выдающиеся физики продолжали мыслить в рамках рефлектирующего сознания, которому чуждо понимание отсутствия тождественности между диалектическим единством и наличностью его противоположностей. Об этом свидетельствует появление таких теорий, как теория скрытых параметров , волны-пилота и другие неудавшиеся попытки интерпретации квантовой механики, а также ее различные широко известные парадоксы . Это показывает, что развитие общефилософских и гносеологических проблем, стимулированных квантовой механикой, является задачей не только физиков. Это развитие обусловливается диалектическим взаимодействием конкретного знания и общефилософских и гносеологических категорий.  [c.15]

Вариационные принципы механики неразрывно связаны с теорией групп преобразований, синтезом аналитического и геометрического аспектов механики, оптико-механической аналогией и единой волново-корпускулярной картиной движений, классической и квантовой теорией физических полей, вариационными методами решения задач движения, равновесия, устойчивости и структуры физических систем и другими фундаментальными проблемами.  [c.780]

Благодаря рассмотренным свойствам методы Лагранжа и Гамильтона приобрели значение в физике. Это значение еще более увеличивается, если учесть тесную внутреннюю связь принципа Гамильтона и оптики — связь, выраженную в оптико-механической аналогии, являющуюся одним из проявлений фундаментального синтеза полевого и корпускулярного аспектов физических процессов. Принцип Гамильтона дает общие формы  [c.877]

Всего Энциклопедия содержит 54 тома и издана в 78 книгах, вышедших в свет с 1955 по 1982 г. Все тома разбиты на одиннадцать групп. В первую группу (математические методы) входят 1-й и 2-й тома во вторую группу (принципы теоретической физики) — тома 3-й (в трех книгах), 4-й и 5-й (в двух книгах) в третью группу (механическое и тепловое поведение материи) — тома 6-й, 6-й,а (в четырех книгах), 7-й (в двух книгах), 8-й (в двух книгах), 9-й, Ш-й, 11-й (в двух книгах) и 12-й — 15-й в четвертую группу (электрическое и магнитное поведение материи) — тома 16-й, 17-й, 18-й (в двух книгах) и 19-й — 20-й. В пятую группу (оптика) входят тома 24-й, 25-й (в пяти книгах) и 26-й — 29-й в шестую группу (рентгеновские и корпускулярные лучи) — тома 30-й — 34-й в седьмую группу (атомная и молекулярная физика) — тома 35-й, 36-й и 37-й (две книги) в восьмую группу (физика атомного ядра) — тома 38-й (в двух книгах), 39-й, 40-й, 41-й (в двух книгах) и 42-й — 45-й в девятую группу (космические лучи) — 46-й том (в двух книгах) в десятую группу (геофизика) — тома 47-й, 48-й и 49-й (в шести книгах). Последнюю одиннадцатую группу (астрофизика) составляют тома 50-й — 54-й. С 1955 по 1960 г. включительно вышло 44 книги, с 1961 по 1970 г.— 21 книга, с  [c.567]


Каждый ИЗ диапазонов имеет свои характерные особенности. С увеличением частоты волн усиливается проявление корпускулярных свойств излучения. Волны разных диапазонов различаются также методами генерации излучения. Каждый из Диапазонов служит предметом изучения соответствующего раздела физики.  [c.13]

В корпускулярных моделях изучаются физические свойства тел в зависимости от их строения, сил взаимодействия между образующими тела молекулами, атомами и ионами, от характера теплового движения этих частиц. Методы исследования этих процессов широко используются в различных разделах молекулярной физики.  [c.8]

Нам неизвестны примеры теоретического решения задачи определения теплопроводности твердых растворов методами теории обобщенной проводимости. Последнее может объясняться существенным различием между традиционными подходами анализа на микроскопическом уровне поведения отдельных атомов и молекул и их ансамблей в кинетической теории (корпускулярные модели) и феноменологическим анализом в теории обобщенной проводимости (континуальные модели).  [c.173]

В данном пункте показано, что аналогию с волновой теорией света Гюйгенса имеет динамика расширенной системы (расширение системы производится на основе метода Лиувилля за счёт введения дополнительных переменных, сопряжённых с обобщёнными координатами и обобщёнными импульсами [1]). Аналогия механики с корпускулярной теорией света Ферма распространяется на движения с ударами, имеющими потенциал ударных импульсов и не меняющими значения обобщённого интеграла энергии.  [c.138]

Области применения названных методов и средства защиты человека от используемых излучений зависят от особенностей взаимодействия излучений с исследуемым веществом. Основными видами излучений, используемых при атомно-физических методах лабораторного анализа, являются корпускулярные излучения альфа- и бета-частицы и электромагнитные излучения — рентгеновское и гамма-излучение. Эти излучения возникают при радиоактивном распаде, причем имеет место как распад ядер по одному из видов распада, так и одновременно по нескольким видам. Ядерные процессы протекают с выделением очень больших энергий. Если химические реакции требуют энергий порядка 10 эВ/атом, то ядерные реакции — тысяч и миллионов эВ/атом.  [c.170]

Помимо волновой природы, носители энергии излучения — фотоны обладают также и свойствами движущихся частиц, т. е. излучение имеет двоякую природу. Как волновая, так и корпускулярная теории излучения относятся к микроскопическим теориям. Мы будем рассматривать феноменологические методы исследования, игнорирующие действительную дискретную структуру среды и квантовый характер процессов излучения. Эти методы исследования основаны на гипотезе о локальном статистическом равновесии, согласно которой в микроскопически малых  [c.642]

Современными методами НК и Д освоен практически весь частотный Диапазон электромагнитного спектра, акустические волны, электростатические поле и корпускулярное излучение, что позволяет создавать поисковые аппаратурные средства, обеспечивающие видение внутренней структуры практически любого объекта контроля в прошедших, отраженных или рассеянных лучах с заданным коэффициентом трансформации размеров изображения.  [c.627]

Лишь немногие задачи физики привлекали в прошлом большее внимание, чем задачи, поставленные корпускулярно-волновым дуализмом света. История решения этих задач общеизвестна. Кульминационным моментом ее явилось построение квантовой теории электромагнитного поля. Однако по некоторым причинам, которые частично имеют математический характер, а частично связаны, по-видимому, со случайностями истории, в квантовой электродинамике рассматривалось очень мало вопросов, имеющих отношение к проблемам оптики. Так, например, статистические свойства пучка фотонов до сих пор описывались почти исключительно классическими или полуклассическими методами. При таком описании можно, конечно, получить некоторую информацию, но неизбежно остаются открытыми серьезные вопросы непротиворечивости теории, а также можно выпустить из поля зрения квантовые явления, которые не имеют классических аналогий. В качестве примера можно указать на корпускулярно-волновой дуализм света, который должен быть центральным вопросом любой теории, правильно описывающей статистику фотонов, и который исчезает при переходе к классическому пределу. Необходимость в более последовательной теории приводит нас к разработке квантовомеханического подхода к проблемам статистики фотонов. Некоторые результаты такого подхода изложены в статье [1]. Настоящая работа будет посвящена детальному анализу предпосылок, на основании которых получены результаты работы [1].  [c.66]


Смертельный удар корпускулярной теории в ее ньютоновской форме был нанесен в 1850 г. К этому времени Физо (1819—1896) и Фуко (1819—1868) впервые измерили скорость света лабораторными методами. Как мы указывали (см. пункты 2 и 5), по корпускулярной теории скорость света в воде больше, а по волновой теории меньше, чем в вакууме. В 1850 г. Фуко и независимо от него Физо и Бреге сравнили обе скорости. Опыт оказался в согласии с волновой и противоречии с корпускулярной теориями света. Физики XIX века восприняли это как решающий опыт, окончательно доказавший неправильность корпускулярной теории света.  [c.28]

Ток в р-п переходах протекает благодаря инжекции неосновных носителей в базовую область и их последующей диффузии и рекомбинации. Точный способ описания этого шума был бы связан с введением источников диффузионного шума и шума генерации — рекомбинации неосновных носителей этот метод назван коллективным и рассмотрен в приложении П.2. Но и в этом случае можно показать, что шум можно рассматривать как процесс, связанный с прохождением носителей через потенциальные барьеры, и, поскольку акты прохождения образуют последовательность независимых случайных событий, можно снова ожидать полного дробового щума. Такой подход назван корпускулярным. В приложении П.2 показано, что он полностью эквивалентен коллективному.  [c.112]

П.2. ЭКВИВАЛЕНТНОСТЬ КОЛЛЕКТИВНОГО И КОРПУСКУЛЯРНОГО МЕТОДОВ ИССЛЕДОВАНИЯ ШУМА В ДИОДАХ И ТРАНЗИСТОРАХ  [c.214]

Р. М. Имамов. ЭЛЕКТРОНОГРАФИЯ, метод изучения структуры в-ва, основанный на исследовании рассеяния образцом ускоренных эл-нов. Применяется для изучения ат. структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров. Физ. основа Э.— дифракция эл-нов (см. Дифракция микрочастиц) при прохождении через в-во эл-ны, обладающие волновыми св-вами (см. Корпускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются дифрагированные пучки интенсивность и расположение к-рых связаны с ат.  [c.891]

За последние годы существенно повысился интерес к вопросам, связанным со статистическими характеристиками света. Интенсивно изучаются когерентные световые поля, обладающие неклассической статистикой фотонов. Эти работы, в частности, имеют целью уменьшить флуктуации фотоприема до уровня, определяемого дробовым шумом фототока. В рамках этой книги невозможно рассматривать эти работы, основанные на квантовой электродинамике и представляющие синтез волновых и корпускулярных представлений. Мы ограничимся предельно кратким указанием на цикл работ , в которых возможность наблюдения флуктуаций фотонов изучалась в классических схемах волновой оптики (интерферометры Юнга и Майкельсона) с использованием современных методов регистрации фототока.  [c.451]

Задача определения скорости света принадлежит к числу важнейших проблем оптики и физики вообще. Решение этой задачи имело огромное принципиальное и практическое значение. Установление того, что скорость распространения света конечна, и измерение этой скорости сделали более конкретными и ясными трудности, стоящие перед различными оптическими теориями. Первые методы определения скорости света, опиравшиеся на астрономические наблюдения, способствовали со своей стороны ясному пониманию чисто астрономических вопросов о затмениях отдаленных светил и о годичном параллаксе звезд. Точные лабораторные методы определения скорости света, выработанные впоследствии, используются при геодезической съемке. Теоретическое обоснование и экспериментальное исследование принципа Допплера в оптике сделали возможным решение задачи о лучевых скоростях светил или движущихся светящихся масс (протуберанцы, каналовые лучи) и привели к весьма широким астрономическим обобщениям. Сравнительное измерение скорости света в вакууме и различных средах послужило в свое время в качестве ехрег1теп1ит сгис1з для выбора между волновой и корпускулярной теориями света, а впоследствии привело к понятию групповой скорости, имеющему большое значение и в современной квантовой физике. Сравнение скорости распространения света с константой с максвелловской теории, обозначающей, с одной стороны, отношение между электромагнитными и электростатическими единицами заряда, а с другой — скорость распространения электромагнитного поля, сыграло важнейшую роль при обосновании электромагнитной теории света. Наконец, вопрос о влиянии движения системы на скорость распространения света и вся обширная совокупность связанных с ним экспериментальных и теоретических проблем привели к формулировке эйнштейновского принципа относительности — одного из самых значительных обобщений  [c.417]

Развитие корпускулярной теории. Впервые корпускулярную теорию строения материн развил английский ученый Р. Бойль. Он вводит в науку понятие химического элемента как простого тела, не составленного из других . Бойль был убежденным сторонником экспериментального метода исследований явле шй, подчеркивая, что только опыт может служить критерием правильности теорий. Он у становил первый в истории газов закон, связывающий давление р и его объем V простым соотношением  [c.63]

Статистические закономерности классической физики являются результатом взаимодействия большого числа частиц, поведение каждой из которых описывается динамическими законами классической механики. Как только число рассматриваемых частиц становится достаточно малым, статистические закономерности классической физики перестают действовать, а соответствующие с гатистичес-кие понятия (например, температура) теряют смысл. По-другому обстоит де ю со ста гистическими закономерностями в квантовой механике, которые выражают свойства индивидуальных микрочастиц и имею место даже при нaJшчии лишь одной частицы. Как показали эксперименты, микрочастица обладает как корпускулярными, так и волновыми свойствами. Поэтому для описания ее движения неприменимы методы и понятия, которые использовались в классической физике в отдельности для формулировки теории движения корпускул и распространения воли. Квантовая механика выработала новые представления о движении микрочастиц и о характере закономерностей, управляющих их движением.  [c.101]


В качестве агента, способного нести многоэлементную информацию о внутреннем строении, составе и свойствах непрозрачных тел и сред, могут быть использованы многие виды оптически сформированных или пр0странствен 10 распределенных потоков проникающих излучений (от гамма-квантов высоких энергий до р адио-волн миллиметрового и субмиллиметрового диапазонов, от упругих колебаний высокой частоты до корпускулярных излучений). Возможно использование для тех же целей нейтронных потоков и других частиц с еще более высокой проникающей способностью [118 171]. Большие перспективы для неразрушающего контроля имеют голографические методы.  [c.477]

В это же время Лаплас ) приложил метод, примененный Мопертюи для получения с корпускулярной точки зрения закона преломления обычного луча, к задаче двойного лучепреломления. Лаплас использовал принцип наименьшего действия, математическая сторона которого настолько усовершенствовалась со времен Мопертюи, что стало возможно применять его К более сложным проблемам, чем иростое преломление света. Лаплас предположил, что кристаллическая среда действует на световые корпускулы необыкновенного луча так, что изменяет их скорость в отношении, которое зависит от наклона необыкновенного луча к оси кристалла. В самом деле, разность квадратов скоростей обыкновенного и необыкновенного луча пропорциональна квадрату синуса угла, который образует необыкновенный луч с осью кристалла. Принцип наименьшего действия тогда приводит к закону преломления, тождественному с тем, который был найден Гюйгенсом. Закон преломления необыкновенного луча может быть также выведен из принципа Ферма при допущении, что скорость обратно пропорциональна той, которая предполагается при рассмотрении вопроса с помощью принципа наименьшего действия скорость, соответствующая принципу Ферма, согласуется со скоростью, найденной Гюйгенсом.  [c.803]

То, что для Гюйгенса и Юнга являлось проблемой, для Гамильтона — исходный пункт. Они ставили себе задачу объяснить опытный факт прямолинейного распространения света, выводя его из каких-то причин, скрытых во внутренней природе световых явлений. Гамильтон видит свою задачу не в обяснении этого факта, а в такой его формулировке, которая максимально удовлетворяла бы стремлению к единству и стройности математической схемы. Это не значит, что нельзя пользоваться вспомогательными конструкциями, вроде волновых фронтов, но не следует приписывать им реальность. Все значение этих вспомогательных конструкций состоит в том, чтобы сделать возможной математическую формулировку наблюдаемых соотношений. В этом Гамильтон убедился еще больше, когда в третьем добавлении к своей Теории систем лучей показал, что построенный им общий метод геометрической оптики может быть выражен как корпускулярным, так и волновым языком, причем, независимо от принятого аспекта.  [c.808]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

КОНТУРНЫЙ подход в теориях калибровочных нолей — метод исследования калибровочных теорий, в к-ром полевая переменная С Г) задаётся на протяжённом объекте — контуре Г в пространстве-времени (в отличие от локальной теории поля, где нолевая переменнан зависит от одной точки X пространства-времени). Локальная теория поля имеет своим прообразом корпускулярную теорию частиц, а контурная — теорию струны.  [c.451]

ЭР-100 4 ступени 25, 50, 75 и 100 кВ). Разрешающая способность Э. достигает Ю —10 нм и зависит от энергии электронов, сечения электронного пучка и расстояния от образца до экрана, к-рое в совр. Э. может изменяться в пределах 200—600 мм, Управление совр. Э., как правило, автоматизировано. Р. М. Имамов. ЭЛЕКТРОНОГРАФИЯ—метод изучения структуры вещества. основанный на исследовании рассеяния образцом ускоренных электронов. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров. Физ. основа Э.— дифракция электронов при прохождении через вещество электроны, обладающие волновыми свойствами (см. Корпускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются дифрагированные пучки, интенсивность и расположение к-рых связаны с атомной структурой образца и др. структурными параметрами. Рассеяние электронов определяется эл.-статич. потенциалом атомов, максимумы к-рого отвечают положениям атомных ядер.  [c.584]

Этот метод расчета лазеров основан на квантовом описании взаимодействия генерируемого (или усиливаемого) электромагнитного излучения с активной средой, когда не только активная среда, но и излучение описываются уравнениями квантовой теории. Квантовый метод основан на учете корпускулярно-волнового дуализма как основного свойства материи. Любой вид материи, будь то поле колебаний какого угодно вида (электромагнитных, упругих и т. д.) или вещество, может быть представлен в виде ансамбля частиц или квазичастиц, которые описываются соответствующими операторами рождения или уничтожения, вводимыми для каждого вида частиц или квазичастиц. Основное различие в свойствах операторов и их связи с характеристиками поля определяются принадлежностью частиц к бозонам или ферми-онам.  [c.33]

Брэдли в своем объяснении аберрации исходил из корпускулярной картины распространения света. Такой же результат получается и из волновой теории (впервые это было показано Юнгом), если считать, что светоносная среда покоится в гелиоцентрической системе отсчета. К представлению о неподвижном эфире приводят и наблюдения за изменением периодов затмений спутников Юпитера, т. е. измерения скорости света по методу Ремера, выполненные при разных положениях Юпитера на эклиптике.  [c.394]


При подготовке монографии мы стремились сделать ее полезной как для специалистов, так и для заинтересованных представителей смежных профессий и студентов. Для полноты представления материала в первых двух главах кратко изложены сведения из механики сплошных сред в объеме, необходимом для обсуждения экспериментов, и обзор современных экспериментальных методов. В третьей и четвертой главах обсуждаются результаты экспериментальных исследований вязкоупруго-пластической деформации материалов различных классов в ударных волнах и расчетные модели неупругого деформирования. Сопротивление разрушению конденсированных сред в субмикросекундном диапазоне длительностей нагрузки изучается путем анализа откольных явлений при отражении импульса ударного сжатия от поверхности тела. Механизм и динамика откольного разрушения в конструкционных металлах и сплавах, пластичных и хрупких монокристаллах, керамиках и горных породах, стеклах, полимерах, эластомерах и жидкостях обсуждаются в пятой главе. В шестой главе представлено несколько наиболее важных примеров полиморфных превращений веществ в ударных волнах. Некоторые вопросы взаимодействия импульсов лазерного и корпускулярного излучения с веществом, что является одним из новых приложений физики ударных волн, обсуждаются в гл.7. Восьмая глава представляет собой обзор уравнений состояния и кинетики разложения взрывчатых веществ в ударных и детонационных вол-  [c.7]

Помимо традиционных способов создания высоких плотностей энергии, в научных исследованиях, в новых технологиях, медицине и других областях все более широко применяются мощные импульсы лазерного и корпускулярного излучения. Если энерговьщеление происходит достаточно быстро, то плотность поглощающей среды не успевает измениться в соответствии с ростом температуры, поэтому давление в ней возрастает. В результате быстрого энерговьщеления в облучаемой мишени формируются волны сжатия, что в значительной мере определяет результат воздействия. В связи с этим возникает проблема описания явление с тем, чтобы, с одной стороны, понимать, прогнозировать и регулирввать результаты взаимодействия мощных импульсов излучения с веществом, и, с другой стороны, получить возможность использования современных методов физики ударных волн для диагностики самого воздействующего излучения.  [c.243]

Классическая механика и квантовая механика. На карте физических наук , представленной в декартовых ос5гх г /с,3/ г (у —скорость частицы, 3 — действие, с — скорость света, Н — постоянная Планка), механика занимает область у/с -С 1, З/Н 1. Она граничит с квантовой механикой (область г /с <С 1, 3/Н< 1) и теорией отно сительно сти (область у/с 1, З/Н > 1). Примениение методов квантовой механики оказалось поразительно успешным в решении многих проблем атомной физики. Ее основные положения принципиально отличаются от представлений классической механики. Состояние системы частиц описывается комплексной волновой функцией (х, ), динамическим переменным сопоставляются операторы, наблюдаемые величины могут принимать дискретные значения, отсутствуют понятия силы, траектории и т. д. Материя может проявлять как волновые, так и корпускулярные свойства.  [c.290]

Методы анализа, основанные на явлении радиоактивности, используют вещест ва-радиоизотопы, способные спонтанно распадаться с получением из ядра корпускулярного или электромагнитного излучения. Число радиоизотопов в настояшее время превышает ИОО. Они нашли широкое применение в различных областях техники, медицины и научных исследований.  [c.172]

Богатая цветовая гамма растительного и животного мира волшебные краски неба, радуги, восхода и захода солнца, эффекты тени, смены дня и ночи, притягательная сила огня и раскаленного металла, кшогоцветие орнаментов национальных одежд, посуды, витражей... Можно долго перечислять примеры нашего повседневного соприкосновения с миром оптических явлений, которое начинается с раннего детства. Это и неудивительно, так как зрение человека основано на закономерностях взаимодействия света с веществом. Оптические свойства твердых тел являются предметом пристального научного и технологического интереса на протяжении последних трех-четьфех столетий, хотя эти свойства широко использовались для решения определенных декоративных задач еще со времен ранних цивилизаций уже древние художники, создатели наскальных изображений, находили эффектные цветовые решения путем смешивания различных природных пигментов. Начиная с открытия Снеллиусом в 1621 г. закона преломления света оптическая спектроскопия прошла полный драматизма и внутренних противоречий путь развития. За исследованиями явлений отражения и преломления света последовал этап повышенного внимания к интерференции, дифракции и поляризации света, а затем пришло время для целенаправленного изучения поглощения, флюоресценции (люминесценции), рассеяния света и нелинейных оптических эффектов. Длительное соперничество между корпускулярной и волновой теориями света увенчалось компромиссом, основанным на кохщепции дуализма, и открытием законов квантовой механики и квантовой электродинамики. Создание лазерных источников и совершенствование методов детектирования электромагнитного излучения превратили спектроскопию в мощный метод исследования физических свойств твердого тела и протекающих в нем элементарных процессов. Более того, вряд ли можно представить сегодня наши познания о микромире без средств, которые обеспечиваются спектроскопией видимого, инфракрасного.  [c.3]

Что касается его исследований в области оптики, он считал, что объекты становятся видимыми благодаря выстреливаемым ими крохотным частицам, попадающим в глаз человека. Потрясаюш.ее предвидение Пифагора вспоминали на всех этапах создания корпускулярной теории. Зная законы отражения, он развивал геометрические методы построения изображений плоскими и кривыми зеркалами, основанные на прослеживании продолжений отраженных лучей за зеркало.  [c.12]

Методы Д. п. делятся на активные и пассивные. Пассивные методы (напр., измерение собств. излучения плазмы) не оказывают влияния на исследуемый объект. К ним относятся спектроскопич. методы, а также фотографирование и измерения эл.-магн. волн в широком диапазоне тормозное излучение, циклотронное излучение и др.). В активных методах плазма непосредственно вовлекается в процесс измерения, и это может внести искажения в её состояние. Активные методы тем не менее используются наряду с пассивными, расширяя диапазон определяемых параметров. Наиболее распространены след, активные методы Д. п. зондирование плазмы электрич. и магн. зондами, СВЧ излучением, пучками заряж. и нейтр. ч-ц (корпускулярная Д. п.). Корпускулярная Д. п. может быть и пассивным методом, если исследуются св-ва ч-ц, выходящих из объёма изучаемой плазмы.  [c.155]

Пассивная корпускулярная Д.п. применяет электрич. и магн. анализаторы (см. Масс-спект-роскопия) и калориметрич. методы измерения для ч-ц, выходящих из объёма изучаемой плазмы. Трудности выведения ч-ц из плазмы, находящейся в сильном магн. поле, делают предпочтительным анализ быстрых нейтр. атомов, возникших в плазме за счёт перезарядки. Такие атомы ионизуются затем в потоке эл-нов или при обдирке на газовых мишенях (либо на тонких фольгах) и далее анализируются по энергиям. При высоких темп-рах, когда в плазме возникают термоядерные реакции Б+В и Б- -Т, измерения потоков и распределения по энергиям продуктов яд. реакций, в частности нейтронов, позволяют определять Г и нек-рые др. параметры плазмы.  [c.156]

Осн. ур-ния, описывающие плазму, известны, однако процессы в плазме столь сложны, что предсказать её поведение в разл. условиях весьма трудно. Гл. проблема, стоящая перед Ф, плазмы,— разработка эффективных методов её разогрева до темп-ры - 10 К и удержание её в этом состоянии в течение времени, достаточного для протекания термоядерной реакции в большей части рабочего объёма. Решение проблемы устойчивости плазмы играет важную роль также в обеспечении работы ускорителей на встречных пучках и в разработке т. н. коллективных методов ускорения ч-ц. Исследование эл.-магн. и корпускулярного излучения плазмы имеет решающее значение для объяснения ускорения заряж- ч-ц прии вспышках сверхновых звёзд, излучения пульсаров и др.  [c.817]

Представленные результаты свидетельствуют о перспективности применения специальных диэлектрических покрытий (которые после обработки легко удаляются) для упрочнения поверхностных слоев изделий любой формы, поскольку такие покрытия наносятся любым из традиционных методов, включая обычную выдержку в растворе (расплаве), а поле ионизирующего излучения, создаваемого рентгеновскими источниками, имеет много меньщую степень анизотропии пространственного распределения по сравнению с лазерным или корпускулярным.  [c.66]


Смотреть страницы где упоминается термин Метод корпускулярный : [c.609]    [c.199]    [c.609]    [c.619]    [c.665]    [c.7]    [c.48]    [c.486]    [c.59]    [c.500]    [c.879]   
Шум Источники описание измерение (1973) -- [ c.112 , c.216 ]



ПОИСК



ВКБ метод Бора-ЗоммерфельдаКрамерса условие корпускулярный анзац

Эквивалентность коллективного и корпускулярного методов исследования шума в диодах и транзисторах



© 2025 Mash-xxl.info Реклама на сайте