Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моды активного резонатора

Составной резонатор. Кроме зеркал О. р, часто содержит т. и. активные элементы (пластинки, линзы и др.). Составной О. р, может работать в двух режимах в зависимости от того, используется или теряется излучение, отражённое от промежуточных поверхностей. Если отражённое излучение используется, то О. р. паз. согласованным. Каждая часть согласованного О.р., заключённая между двумя соседними поверхностями раздела, может рассматриваться как отд. резонатор, причём поперечные моды этих резонаторов подбирают так, чтобы они совпадали на границах раздела. Условие согласования (рис. 5) имеет вид  [c.455]


Причина такого свойства расстроенных характеристик заключается в том, что при комбинированной синхронизации мод активные среды могут компенсировать значительные расстройки резонаторов. Поглощающая среда вносит отрицательные задержки, а усиливающая — положительные. Отметим еще значительное повышение стабильности режима генерации по сравнению с чисто активной синхронизацией мод.  [c.254]

Сначала излагается теория связанных резонаторов и описываются методы селекции мод, основанные на этой теории. Приводятся характеристики наиболее распространенных частотных селекторов. Далее обсуждаются вопросы согласования поперечных мод отдельных резонаторов. В заключение даются физические основы теории сложного перестраиваемого резонатора, используемого в лазерах на красителях и в лазерах с другими активными средами, обладающими большим усилением.  [c.169]

Если уширение резонансов, обусловленное потерями резонатора, становится много больше межмодового интервала, то спектр собственных значений мод такого резонатора превращается в почти непрерывный. Такого же эффекта можно добиться, если одно из зеркал резонатора заменить рассеивающей поверхностью. Аналогично, если в активную среду поместить достаточное количество рассеивающих частиц, то возникает обратная связь и система может действовать как лазер. Вообще говоря, резонаторы, имеющие большое число вырожденных мод, могут использоваться для создания нерезонансной обратной связи [12]. Важное преимущество этих резонаторов перед резонаторами типа Фабри — Перо заключается в том, что их частота генерации не зависит от геометрических размеров лазера. Это позволяет использовать лазеры с такими резонаторами в качестве стандартов частоты, которые, однако, не имеют преимуществ, связанных с временной и пространственной когерентностью обычных лазеров.  [c.487]

Прежде чем перейти к детальному описанию методов, с помощью которых могут быть рассчитаны моды открытого резонатора, напомним некоторые технические термины. Добротность резонатора Q определяется как Q = со о, где со — частота моды, а /о — ее время жизни в незаполненном резонаторе, т. е. в резонаторе без активной среды. Величина /о — это время, за которое интенсивность моды уменьшается в е раз. В данной книге будет использована константа затухания х = 1/2 /о- Чтобы получить большую добротность Q, согласно физической оптике (теории дифракции), нужно обеспечить выполнение следующего условия. В случае двух зеркал с апертурами 2/11 и 2/12, разнесенных на расстояние О, должно выполняться неравенство  [c.68]


Эта формула говорит нам, что в общем случае частота генерации лазера Й не совпадает с частотой моды пустого резонатора. Это такой резонатор, в котором нет взаимодействия между оптическими модами и активной средой, или, другими словами, это резонатор без активных атомов. Смысл частотного сдвига (6.33) легко уяснить, если вспомнить, что константы затухания х и 7 пропорциональны обратным временам релаксации светового поля /1 и атомных дипольных моментов а, соответственно. Следовательно, если ввести вместо X и 7 соответствующие временные константы  [c.144]

Как обычно, амплитудная модуляция гармонического сигнала приводит к появлению в его спектре боковых частот, сдвинутых от несущей частоты на Аг . Значит, в лазере спектр излучения вышедших в генерацию мод после прохода сквозь модулятор обогащается боковыми частотами, точно попадающими на частоты соседних продольных мод лазерного резонатора эти боковые спектральные компоненты играют роль вынуждающей силы для излучения на соседних модах. Последние возбуждаются благодаря наличию усиления в активной среде на широкой полосе частот, причем они рождаются уже с фазами, жестко навязанными им вынуждающей силой и, следовательно, синхронизованы с первой модой. Дальше идет процесс размножения генерации по модам с сохранением фазовой привязки.  [c.44]

Если вернуться к случаю активного резонатора, то очевидно, что при увеличении уровня возбуждения активной среды лазера при прочих одинаковых условиях моды с низкими потерями начинают излучаться первыми. В общем же случае развитие определенной продольной моды (из общего числа продольных мод, связанных с данной поперечной модой), которая первой достигает порога генерации, определяется зависимостью усиления активного вещества от частоты. Мы возвратимся к этому вопросу в 5 этой главы. Путем соответствующего подбора параметров резонатора и активной среды можно получить генерацию на одной моде резонатора.  [c.23]

В 6 мы рассмотрим, как меняется временная когерентность мод в активном резонаторе при введении энергии в поле излучения через спонтанное и вынужденное испускание.  [c.24]

Во второй главе анализируется роль резонатора в формировании поля излучения лазера, излагаются основы теории открытых резонаторов. Используются геометрооптическое приближение, итерационный метод Фокса—Ли, модель гауссовых пучков, закон АВСО. Учитываются апертуры зеркал, наличие внутри резонатора линзы или диафрагмы, разъюстировка элементов в резонаторе. Рассматриваются резонаторы различной геометрии — как устойчивые, так и неустойчивые. В случае активных резонаторов обсуждаются эффекты тепловой линзы, затягивания частот и выгорания дыр . Уделяется внимание вопросам селекции продольных мод, а также физике волноводных резонаторов и пленочных лазеров с распределенной обратной связью.  [c.5]

Вместе с тем нельзя забывать, что наличие усиливающей активной среды вносит определенную специфику в процесс формирования поля в резонаторе (см., например, [91). Прежде всего следует отметить конкуренцию мод, приводящую к перераспределению генерируемой мощности из одних мод в другие, о перераспределение может происходить как по шкале частот (между продольными модами) так и в пространстве (между поперечными модами). Активная среда обусловливает конкуренцию мод благодаря нелинейно-оптическому эффекту насыщения усиления. Насыщение усиления на определенных частотах может приводить к появлению провалов в профиле линии усиления эффект выгорания дыру). Насыщение усиления может приводить также к тому, что более добротными становятся не низшие, а высшие поперечные моды (моды с относительно большими значениями поперечных индексов). Остановимся на этом подробнее.  [c.107]

Возбудим в пассивном резонаторе каким-либо образом различные моды и будем наблюдать за процессом их постепенного затухания со временем. Различие потерь для разных мод приведет к тому, что разные моды будут затухать с разной скоростью, в результате чего модовая структура поля будет со временем изменяться. В этой структуре все сильнее будут преобладать моды, характеризующиеся наименьшими потерями. Таким образом, резонатор уподобляется своеобразному фильтру , вьщеляющему из произвольного поля излучения компоненты, соответствующие модам с наиболее низкими потерями. При наличии усиливающей активной среды высокодобротные моды пассивного резонатора будут характеризоваться, очевидно, наибольшей разностью (хо — л) именно поэтому они и будут усиливаться в первую очередь.  [c.116]


Таким образом, вместо (3.2.60) имеем следующее уравнение, описывающее п-ю продольную моду в активном резонаторе с потерями  [c.302]

Оптимальные результаты ищутся на пути, использующем комбинированный метод синхронизации мод. В этом случае внутри резонатора помещают просветляющийся филЬтр и синхронизатор мод активного типа используется также со-  [c.383]

Рис. 3. Спектр, линия активной среды (линия усиления) и моды оптич. резонатора. Рис. 3. Спектр, линия <a href="/info/14671">активной среды</a> (<a href="/info/367039">линия усиления</a>) и моды оптич. резонатора.
В заключение укажем еще одно явление, способное приводить к пйчковому режиму генерации. Линия флюоресценции твердотельных лазеров (см. табл. 1.1) достаточно широка, длина резонатора, наоборот, мала и поэтому все они, как правило, могут работать на большом числе продольных мод. Активные ионы рабочего тела в твердотельных лазерах закреплены на своем месте в матрице. Поэтому возникновение генерации на одной из собственных частот резонатора приводит к снижению коэффициента усиления в слоях рабочего тела, совпадающих с пучностями стоячей электромагнитной волны. В результате этого создаются предпочтительные условия генерации с пучностями поля, соответствующими узлам ранее рассмотренной моды, и возникает возможность пичкового режима генерации.  [c.173]

Импульсные генераторы. Особенности лазеров с неустойчивыми резонаторами. При импульсном возбуждении активной среды устойчивые резонаторы используются лишь в весьма редко встречающихся малоапертурных лазерах (N < 1) процесс выделения отдельных мод устойчивых резонаторов с > 1 длится Слишком долго. Даже если длительность импульса формально и превышает время установления колебаний, для удовлетворительной работы лазера это часто оказывается недостаточным. Дело в том, что резонатор в течение импульса накачки за счет нагревания среды и других подобных процессов всегда подвергается определенной перестройке, поэтому процесс установления как бы многократно начинается заново (в пичковом режиме это проявляется воочию). Указанное обстоятельство существенно упрощает наш анализ для подавляющего большинства лазеров приходится выбирать только между плоскими и неустойчивыми резонаторами.  [c.208]

Механизм, приводящий к ухудшению направленности излучения в подобных случаях, был изучен в [50,43]. Оказалось, что при введении в телескопический резонатор частично отражающей плоской пластинки появляются паразитные моды, которым соответствуют замкнутые траектории лучей, причем на одно отражение от этой пластинки приходится много проходов по активной среде. Поэтому паразитные моды даже при совсем мало отражающей пластинке имеют более низкие пороги возбуждения, чем основная мода двухзеркального резонатора. Поскольку этим модам, кроме того, присуща высокая неравномерность распределения поля, возбуждаются сразу несколько из них со всеми вытекающими отсюда печальными последствиями. И неудивительно в 2.5 мы сталкивались с тем, что наличие даже ничтожно слабой сходящей волны, порожденной краевой дифракцией, приводит к вырождению мод по потерям. Поэтому предпринимаемые иногда попытки повлиять на режим генерации (в частности, понизить его порог) путем установки в резонатор элементов, иници-  [c.211]

Единственным заметным отличием временных характеристик излучения лезеров на неодимовом стекше с неустойчивыми резонаторами от характеристик работающих в пичковом режиме (гл. 3) аналогичных лазеров с плоскими резонаторами явилось сокращение длительностей пичков [62] это является следствием более быстрого установления колебаний ( 3.3). Интегральные по времени спектральные характеристики при устойчивых и плоских резонаторах оказались неразличимыми. Это и неудивительно спектральное распределение излучения является, по существу, распределением интенсивности между модами с различными аксиальными индексами ( 3.3). Во всей центральной зоне неустойчивого резонатора (область / на рис. 3.15), играющей основную роль в механизме генерации, имеют место те же интерференция двух встречных пучков и образование стоячих волн, что и в плоском резонаторе. Поэтому механизм пространственной конкуренции аксиальных мод в резонаторах обоих типов одинаков, несмотря на то, что в устойчивом резонаторе периферийная часть активного элемента (область//на том же рисунке) заполнена излучением, распространяющимся только в одну сторону (см. также в 4.4 о проблеме спектральной селекции в кольцевых резонаторах).  [c.212]

Рнс. в.2. Принципы]геиерации световых импульсов а — амплитудная модуля-цня в пассивной системе б — модуляция добротности лазерного резонатора в — синхронизация продольных мод в активном резонаторе г — фокусировка во времени, быстрая фазовая модуляция и компрессия  [c.12]

Система уравнений (4.2)—(4.6) может быть использована для анализа многомодового режима как при пассивной модуляции добротности, так и при свободной генерации. Для этого следует лишь отбросить уравнение (4.5) и последний член в уравнении (4.6). Ниже будут изложены результаты численного исследования системы уравнений, аналогичной системе (4.4)—(4.6), но несколько упрощенной вследствие использования предположения о том, что внутри резонатора могут существовать только продольные моды (поперечный индекс опущен) и неоднородность продольного распределения плотности мод в резонаторе не учитывается ( F и приняты равными единице). Поскольку контур линий усиления в активной среде чаще всего может быть аппроксимирован лорен-цовской (однородное уширение — рубин, гранат и другие кристаллы) или гауссовской (стекла) зависимостью, имеющей максимум в центре линии усиления, а спектральные кривые поглощения фототропных веществ — некоторой линейной зависимостью с углом наклона, различающимся для разных красителей и рас-  [c.180]


В лазере с осесимметричной пространственно неоднородной анизотропией (цилиндрический активный элемент в режиме им-пульсно-периодической накачки) путем изменения параметров резонатора была получена генерация лазера на упомянутых выше поперечно-электрических и поперечно-магнитных модах устойчивых резонаторов [73, 103]. Отметим, что в отличии от моды ТЕМоо с линейной (в общем случае — эллиптической) поляризацией распределения полей низшего порядка аксиальносимметричных поляризаций имеет провал в центре. Это и неудивительно, поскольку такие моды по существу можно рассматривать как суперпозицию надлежащим образом размещенных в резонаторе линейно поляризованных мод ТЕМю (см. рис. 2.24). И хотя в центре активного элемента анизотропия отсутствует (см. рис. 1.13), источником дополнительных потерь для генерации, например линейно поляризованной моды ТЕМоо, заполняющей приосевую область, является именно наличие уже на малых расстояниях от центра активного элемента поляризационной анизотропии фазового характера, характеристики которой (в данном случае — ориентация главных осей) заметно из-  [c.97]

Состояние поляризации генерируемой моды также изменяется оно становится неоднородным в поперечном сечении пучка, поляризация как бы подстраивается под анизотропию активного элемента. Это приводит к тому, что величины потерь на деполяризацию (подобных рассмотренным в п. 1.3 для плоскополя-ризованной волны на один проход) для основной моды анизотропного резонатора могут сильно (в несколько раз) отличаться от вычисленных по формуле (1.33).  [c.98]

Настоящая книга содержит пять глав. Гл. 1 посвящена оптике гауссовых пучков. Глава 2 посвящена методу интегрального уравнения. В ней рассматриваются методы исследования лазерных резонаторов, содержащих негауссовы элементы — диафрагмы с резким краем, элементы с аберрациями и др. В главе 3 исследуются резонаторы, содержащие несколько оптических элементов (например, вспомогательные зеркала) различного назначения. Вспомогательные зеркала могут влиять на продольный спектр резонатора, в частности, делать его более редким. При этом важную роль играет согласование поперечных мод лазерного резонатора. В лазерах па красителях дополнительные оптические элементы позволяют реализовывать одномодовый режим генерации. Глава 4 посвящена резонаторам твердотельных лазеров. Их основной особенностью является наличие термооптически искаженного под влиянием накачки активного элемента. Отыскание ре-зонаторных конфигураций, наименее восприимчивых к нестабильностям накачки, является довольно трудным делом, читатель почерпнет в четвертой главе много полезного для себя в этом отношении. В главе 5 излагаются геометро-оптические методы исследования резонаторов. Введение и гл. 1, 3, 5 написаны В.П. Быковым гл. 2, 4 — 0.0. Си-личевым.  [c.8]

Во-первых, поперечное распределение стационарных структур в резонаторе с усилением с очень большой точностью совпадает с поперечными модами пустого резонатора. Этот результат позволяет использовать решения, полученные для случая пустого резонатора, при анализе лазерного резонатора с активной средой. Заметим, что этот факт является проявлением обгцей закономерности, состоягцей в слабом искажении поперечных мод амплитудными пеодпородностя-ми, в то время, как даже сравнительно слабые, фазовые аберрации могут приводить к весьма сильным искажениям моды [10.  [c.162]

Сам по себе лазерный открытый резонатор является средством разрежения спектра по сравнению, например, со спектром равновеликого объемного резонатора. Однако поскольку полоса усиления активных сред, как правило, довольно велика, в эту полосу обычно попадает большое число мод лазерного резонатора, в частности продольных. Поэтому применяются некоторые средства дополнительного разрежения спектра лазерных резонаторов. Такое дополнительное разрежение спектра получило пазвапие селекции мод. Все методы селекции мод основаны на увеличении потерь одних мод по сравнению с другими, рабочими. Селекция продольных мод, отличаюгцихся частотой, требует применения узкополосных дисперсионных элементов.  [c.175]

Если возможности укорочения резонатора исчерпаны, то можно прибегнуть к дополнительным внешним зеркалам, т. е. к разрежению спектра с помогцью системы связанных резонаторов. Само по себе добавление дополнительных резонаторов не приводит к разрежению спектра. Наоборот, спектр становится гугце, так как к резонансам основного резонатора добавляются резонансы дополнительных резонаторов. Разрежение спектра или селекция мод возникает, когда имеются потери на внешних зеркалах, через которые излучение частично выводится из резонатора. В этом случае дополнительные резонаторы играют роль устройств, согласуюгцих большую часть мод основного резонатора со свободным пространством, так что их потери сугцественно возрастают лишь некоторые моды основного резонатора остаются высокодобротными. Моды дополнительных резонаторов в той части резонатора, где находится активная среда, имеют малую амплитуду и, как правило, низкодобротны, так что фактически они не возбуждаются.  [c.176]

Если условие согласования не выполнено, то мода одного из связанных резонаторов, проходя через среднее зеркало, порождает пе одну, а несколько мод второго резонатора, среди которых могут быть и высшие моды, обладаюгцие большими потерями. Эти новые моды, распространяясь в резонаторе, будут при каждом отражении от среднего зеркала порождать новые серии мод, все более широкие, под-ходягцие к краям зеркал или активных элементов и обладаюгцие в связи с этим большими потерями. Короче говоря, несогласованность связанных резонаторов ведет к увеличению их потерь.  [c.180]

Возбуждение в активном резонаторе того или иного типа колебаний определяется выполнением порогового условия генерации (1.1). Различные типы колебаний характеризуются разной величиной дифракционных потерь, разным положением резонансных частот в спектральном контуре усиления. Поля собственных волн резонатора по-разному согласуются с пространственным распределением усиления в активной среде. Все эти обстоятельства создают неодинаковые условия для возбуждения различных мод и ограничивают модовый состав излучения конкретного активного резонатора. На возбуждение типов колебаний существенно влияют эффекты межмодовой конкуренции.  [c.15]

Особенность вырожденных устойчивых конфигураций можно наблюдать экспериментально, если фиксировать интенсивность возбуждаемых в активном резонаторе колебаний при непрерывном изменении его длины [17, 93, 106]. В точках, соответствующих вырожденным конфигурациям, наблюдаются резкие экстремумы мощности. Любопытно, что в различных экспериментах фиксировались максимумы и минимумы мощности. Это явление легко понять, если учесть, что вырожденные резонаторы характеризуются двумя факторами, противоположно влияющими на энергетику генерации. С одной стороны, локальное уменьшение дифракционных потерь тем резче, чем меньше общий уровень этих потерь. С другой стороны, частотное и пространственное (по продольной оси) вырождение поперечных типов колебаний. Таким образом, в режиме одной поперечной моды при малом уровне недифракционных потерь, когда межмодо-вая конкуренция не играет роли, а дифракционные потери составляют значительную долю в общем балансе потерь, можно ожидать максимума мощности [93]. Напротив, при высоком общем уровне потерь, когда с дифракционными эффектами можно не считаться, в многомодовом режиме следует ожидать минимума мощности [17, 106].  [c.81]

В принципе световое и вообще электромагнитное поле содержит все возможные длины волн, направления распространения и на правления поляризации. Но главное назначение лазера как прибора состоит в генерации света с определенными характеристиками. Первый этап селекции, а именно по частоте, достигается выбором лазерного материала. Частота V испускаемого света определяется формулой Бора Ну = и нач — конечн и фиксируется выбором уровней энергии активной среды. Разумеется, линии оптических переходов не являются резкими, а по различным причинам уширены. Причиной уширения могут быть конечные времена жизни уровней вследствие излучательных переходов или столкновений, неоднородность кристаллических полей и т. д. Для дальнейшей селекции частот используются оптические резонаторы. В простейшем СВЧ-резонаторе, стенки которого имеют бесконечно высокую проводимость, могут существовать стоячие волны с дискретными частотами. Эти волны являются собственными модами резонатора. Когда ученые пытались распространить принцип мазера на оптическую область спектра, было не ясно, будут ли вообще моды у резонатора, образованного двумя зеркалами и не имеющего боковых стенок (рис. 3.1). Вследствие дифракции и потерь на пропускание в зеркалах в таком открытом резонаторе не может длительно существовать стационарное поле. Оказалось, однако, что представление о типах колебаний (модах) с успехом может быть применено и к открытому резонатору. Первое доказательство было дано с помощью компьютерных вычислений. Фокс и Ли рассмотрели систему двух плоских параллельных зеркал и задали начальное распределение поля на одном из зеркал. Затем они исследовали распространение излучения и его отражение. После первых шагов начальное световое поле рассеивалось и его амплитуда уменьшалась. Однако после, скажем, 50 двойных проходов мода поля приобретала некую окончательную форму и ее амплитуда понижалась в одно и тоже число раз при каждом отражении (с постоянным коэффициентом отражения. Стало ясно, как обобщить понятие моды на случай открытого резонатора. Это такая конфигурация поля, которая не изменяется  [c.64]


Излучение черного тела в отдельной поперечной моде. Для того чтобы сравнить излучение лазера с излученнеи других источников нам следует проанализировать типы коле- баиий. В п. 3.1 мы описывали излучение черного тела, пользуясь понятием типов колебаний закрытого резонатора. Здесь мы рассмотрим излучение черного тела в одной поперечной моде оптического резонатора. Такое излучение может спонтанно возникать в активной среде.  [c.45]

Влияние иасыщеиия усилеиия па моды. Большинство исследований процесса формирования мод в оптических резонаторах было проведено при упрощающем нредноложенни, что резонатор является пассивным. В этом случае высшие моды устойчивых резонаторов, составленных из вогнутых сферических зеркал, имеют более значительные потери. Однако, когда присутствует активная среда, обладающая усилением,- моды высшего порядка ие обязательно должны характеризоваться самыми большими потерями, поскольку установление типа колебаний теперь зависит ог способности атомов усиливать излучение. Для атомов в центральной области все моды являются конкурирующими, но поскольку моды более высокого порядка занимают большие объемы в активной среде, они имеют возможность получать энергию от тех атомов которые не доступны для. юд более низкого по-  [c.201]

Число волноводных мод в резонаторе. Число возмож-ныxJ вoлнoвoдныx мод ограничено условием полного внутреннего отражения от боковых граней активного элемента  [c.240]

В свете этих представлений высокая монохроматичность лазерного излучения остается непонятной. Однако если обратить внимание на роль резонатора при образовании системы стоячих волн, то этому можно найти объяснение. Согласно формуле (17,12), стоячие волны возникают только при т = - 1, 2, 3,. .. (типы колебаний, соответствующие разным значениям т, называются модами). Можно оценить порядок числа мод для конкретного случая, например при L 10 см, I 5000 А, как следует из формулы (17.12), т 10 Однако в резонаторе возникнут не все моды, а лишь не-дшогие 113 них, которые одновременно удовлетворяют и условию, связывающему частоту излучения с разностью энергетических уровней атома активной среды, с учетом ширины данных уровней. Несколько таких мод представляют собой очень узкие линии, частоты которых отстоят друг от друга на Av = /2L.  [c.387]

Ширина спектра излучения лазера определяется главным образом числом генерирующих мод. В оптических резонаторах может одновременно возбуждаться большое число мод (так называемый многомодовый режим генерации). Вследствие этого лазер обычно излучает набор различных частот, которые лежат внутри линии люминесценции активного вещества. Например, для твердотельных лазеров, работающих в многомодовом режиме, ширина линии излучения Атгсч может быть порядка 1 ГГц. Следует отметить, что многомодовый режим работы генератора ухудшает когерентность и направленность излучения.  [c.281]

Явление насыщения усиления было рассмотрено выше для простого случая, когда генерация осуществляется на одной частоте. В Не—iNe-лазере, за исключением пороговой области, в генерации обычно участвует несколько продольных мод и часто также несколько поперечных мод. При длине резонатора 1 м частотные интервалы между соседними модами невелики, вследствие чего происходит значительное перекрытие провалов на кривой коэффициента усиления. Это соответствует случаю так называемого квазиоднородного насыщения усиления. Теоретическое рассмотрение насыщения усиления при этом оказывается достаточно сложным. Однако общий характер зависимости коэффициента усиления от плотности излучения остается неизменным. Если принять, что мощность насыщения Рц остается постоянной независимо от условий возбуждения активной среды, Рн = onst, то можно по-казать, что средняя мощность излучения в резонаторе ОКГ Р зависит от отношения К°1Кп  [c.305]

При наличии инверсной населенности уровней энергии 2 и i активной среды ( 2> i), т. е. при выполнении условия N2lg2>N)gi (Ni, Nu 2, g — населенности н кратности вырождения уровней 2, i) вынужденное излучение превалирует над поглощением и свет с резонансной частотой ш = 2— i/h усиливается при прохождении через среду. Усиленный таким образом свет люминесценции активной среды называют излучением сверхлюминесценции. Для возникновения генерации вводят положительную обратную связь, располагая активную среду в оптическом резонаторе, который в простейшем случае представляет собой два параллельных зеркала. Одно из зеркал резонатора делается полупрозрачным для частичного вывода излучения. Пространственное распределение поля генерируемого излучения соответствует собственным колебаниям резонатора, называемым модами. Различают продольные и поперечные моды, относящиеся к распределению поля вдоль оси резонатора и в плоскости, перпендикулярной оси. Искусственное снижение добротности резонатора позволяет достичь значительного коэффициента усиления активной среды без возникновения генерации. Последующее быстрое включение добротности приводит к генерации мощных световых импульсов малой длительности (гигантских импульсов).  [c.895]


Смотреть страницы где упоминается термин Моды активного резонатора : [c.92]    [c.232]    [c.286]    [c.91]    [c.232]    [c.9]    [c.184]    [c.495]    [c.67]    [c.31]    [c.231]    [c.302]   
Введение в физику лазеров (1978) -- [ c.202 ]



ПОИСК



Мода

Модем

Моды активного резонатора взаимодействие

Моды активного резонатора вырождение

Моды резонатора

Резонатор активный

Резонаторы



© 2025 Mash-xxl.info Реклама на сайте