Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловыделяющие элементы атомных

Рассмотрим температурное поле в телах простейшей формы при объемном тепловыделении для случаев, когда внутренние источники теплоты равномерно распределены по всему объему. Задачи такого вида приходится решать при расчете тепловыделяющих элементов атомных реакторов, при нагреве тел токами высокой частоты и в других случаях.  [c.284]

Тепловыделяющие элементы атомных энергоустановок 163, 169, 175, 177, 178 Тепловые коммуникации  [c.465]


Выделим мысленно внутри тела некоторый объем. В этом объеме могут действовать источники тепловыделения, как это имеет место, например, в электрических проводниках, находящихся под током, или в тепловыделяющих элементах атомных реакторов. Количество теплоты dQ T, выделенное внутренними источниками, за вычетом количества теплоты dQ b,T, вытекшего сквозь поверхность наружу, идет на приращение внутренней энергии вещества в выделенном объеме  [c.17]

Принципиальная схема двухконтурной атомной паросиловой установки представлена на рис. 12-31. Тепловая энергия генерируется в тепловыделяющих элементах атомного реактора / и передается промежуточному теплоносителю, который поступает затем в парогенератор 2 и отдает ее рабочему телу энергетического контура установки, т. е. водяному пару. iB качестве промежуточного теплоносителя применяются вода иод высоким давлением, высокотемпературные органические теплоносители, жидкие металлы и газы циркуляция его в контуре реактора осуществляется с помощью насоса 3. Энергетический контур состоит из тех же элементов, что и  [c.234]

Годовая продукция химических производств с использованием отработанных тепловыделяющих элементов атомной электростанции мощностью 2 млн. пет  [c.203]

Методом прокатки порошков получают полуфабрикаты в виде однослойных и многослойных пористых и беспористых лент и полос, прутков и проволоки тонких сечений (обычно от 0,25 до нескольких миллиметров). Представляет интерес получение этим способом полос и пластин из смесей сложных составов, из которых в обычных условиях проката компактных металлов и сплавов получить такие полуфабрикаты невозможно или трудно. Таким методом получают тонкие пластинки твердых сплавов, некоторые тепловыделяющие элементы атомных реакторов, полосы и ленты фрикционного назначения и некоторые нагреватели.  [c.324]

Третья группа — натурные методы могут быть либо имитирующими (в лабораторных условиях или непосредственно на стендах), либо испытаниями в условиях эксплуатации. Сюда относятся, например, испытания паропроводов электростанций, турбинных лопаток в газовом потоке, тепловыделяющих элементов атомных реакторов и т. п. Как и при других натурных исследованиях, результаты таких испытаний, будучи близкими к реальным условиям, в то же время с трудом поддаются обобщению и переносу на другие условия нагружения. Очевидно, необходимо оптимальное сочетание различных видов испытаний с окончательной проверкой полученных выводов в условиях, возможно более близких к эксплуатационным.  [c.222]


Определить потерю работоспособности, происходящую в тепловыделяющем элементе атомного реактора, где выделяющаяся в процессе ядерной реакции теплота поглощается водой, протекающей при давлении 10 МПа. Вода нагревается от /i = 190° до <2=280 °С температура тепловыделяющего элемента <з=380°С к постоянна по высоте. Расчет потери вести на 419 кДж переданной теплоты. Температура окружающей среды <о=20°С. Считать, что тепловые потери отсутствуют. Гидравлическими сопротивлениями пренебречь.  [c.57]

Однако в ряде случаев внутри объектов исследования могут протекать процессы, в результате которых будет выделяться или поглощаться тепло. Примерами таких процессов могут служить выделение джоулева тепла при прохождении электрического тока по проводникам объемное выделение тепла в тепловыделяющих элементах атомных реакторов вследствие торможения осколков деления ядер атомного горючего, а также замедления потока нейтронов выделение или поглощение тепла при протекании ряда химических реакций и т. д.  [c.66]

Книга предназначена для инженеров и научных работников, работающих в области производства и исследования ядерного топлива для тепловыделяющих элементов атомных реакторов, она также может служить учебным пособием для студентов вузов соответствующих специальностей.  [c.2]

Молибден, вольфрам и хром обладают высокой жаропрочностью, однако они склонны к хрупкому разрушению. Ниобий и тантал - высокопластичные материалы и хорошо свариваются. Цирконий выдерживает высокие температуры в окислительной атмосфере, пластичен и прозрачен для нейтронов. Из него изготавливают корпуса тепловыделяющих элементов атомных реакторов.  [c.26]

Линейная часть магистралей, обвязка перекачивающих станций, промысловые и распределительные сети, тепловыделяющие элементы атомных реакторов и теплообменные контуры атомных электростанций (АЭС) сооружаются из металлических труб. Надежность трубопроводных плетей определяются маркой стали, качеством изготовления, в том числе наличием и качеством внутреннего и внешнего покрытия, условиями доставки, качеством проведения строительно-монтажных работ.  [c.22]

Определить распределение температур теплоносителя и стенки по длине канала активной зоны атомного реактора. Тепловыделяющий элемент имеет форму цилиндра с внешним диаметром d=15 мм и длиной / = 2,5 м, выполненного из урана [Х=31 Вт/(мХ Х°С)]. Поверхность твэла покрыта плотно прилегающей оболочкой из нержавеющей стали [Ас=21 Вт/(м-°С)] толщиной 6 = 0,5 мм.  [c.132]

На первой советской атомной электростанции предельная температура для центра тепловыделяющих элементов с металлическим ураном принималась равной 370° С, что позволило получать перегретый пар с давлением 13 бар и температурой 270° С.  [c.321]

Основой атомной энергетической установки (АЭУ) является ядерный реактор, в тепловыделяющих элементах которого происходит управляемая и регулируемая реакция деления ядер атомного топлива. Образующаяся в реакторе теплота отводится циркулирующим теплоносителем. АЭУ бывают одноконтурными, двухконтурны-ми или трехконтурными. При одноконтурной схеме теплота ядерной реакции передается непосредственно рабочему телу, которое направляется в обычную паросиловую или газотурбинную установку. Таким образом, при одноконтурной схеме ядерный реактор выполняет функцию камеры сгорания и парогенератора. При двухконтурной схеме промежуточный теплоноситель воспринимает теплоту в ядерном реакторе и отдает ее рабочему телу в парогенераторе. Трехконтурная схема предполагает наличие еще одного внутреннего контура между контуром первичного теплоносителя и контуром, в котором циркулирует рабочее тело.  [c.216]

Термический к. п. д. циклов атомных электростанций, как и паросилового цикла Ренкина, зависит от начальных и конечных параметров пара. Начальные параметры пара ограничиваются допустимой температурой покрытий тепловыделяющих элементов  [c.128]


На рис. 36-2 показана принципиальная тепловая схема Белоярской атомной электрической станции СССР. Мощность первой очереди этой атомной электрической станции, вырабатываемая турбогенератором ВК-100-90, составляет 100 Мет. Реакторы на станции работают на медленных нейтронах с графитовым замедлителем. Они являются дальнейшим развитием реакторов, установленных на первой отечественной атомной станции. Тепловыделяющие элементы у этих станций однотипны, но длина их на рассматриваемой станции составляет 6 м вместо 1,7 м на первой из них.  [c.467]

Извлечение тепловыделяющих элементов из атомных реакторов ведется без непосредственного участия обслуживающего персонала — посредством специальных мостовых подъемных кранов или загрузочно-разгрузочных машин с дистанционным управлением, а отправка их на перерабатывающие заводы производится в особых свинцовых защитных контейнерах. В специальных бассейнах под слоем воды или в герметических горячих камерах на станках с дистанционным обслуживанием выполняется механическая раз-  [c.164]

Натурные методы. Испытания проводятся в условиях эксплуатации или имитируются эксплуатационные условия на лабораторных стендах. Сюда относятся ислытания паропроводов, турбинных лопаток, тепловыделяющих элементов атомных реакторов и т. п. Как и другие натурные испытания, они носят частный характер, трудно обобщаются и результаты их не поддаются переносу на другие условия нагружения.  [c.264]

Экстремальные режимы нагружения (мягкий и жесткий) реализуются менее часто и при соблюдении особых условий. Близкий к жесткому режим имеет место, например, в зонах резкой концентрации напряжений [17] (пазы диска турбины [10, 22, 43], кромки водовпускных отверстий паровых котлов [32, 33, 98]) в связи с тем, что размеры этих зон существенно малы по сравнению с размерами окружающих объемов детали, деформирующихся в целом упруго. Другим примером такой реализации является деформирование поверхностных объемов детали при интенсивном тепловом воздействии и умеренной интеисивности циклического процесса теплообмена (корпуса турбин с рабочим телом высоких параметров н др.). Режимы нагружения, близкие к мягкому, могут встречаться в элементах машин и конструкций, в которых весьма высоки механические и термические напрял<ения, в результате чего возможно накопление односторонних циклических деформаций как в зонах концентрации, так и в зонах с номинальными напряжениями (оболочки тепловыделяющих элементов атомных реакторов, ковши металлургического оборудования, диски турбин при экстремальных режимах форсированных испытаний).  [c.39]

Изучение вопросов гермопрочности и надежности тепловыделяющих элементов атомных реакторов и различного рода топливных баков, повышение эксплуатационных характеристик радиоэлектронных и оптических приборов, исследование остаточных напряжений в свариваемых элементах с использованием предварительного и сопутствующего подогрева и охлаждения, импульсной технологии поверхностного упрочнения деталей машин, аппаратов и элементов конструкций приводит к необходимости учета локального изменения коэффициентов теплоотдачи.  [c.98]

О возможных масштабах полз чения продукции методами радиационной химии с использованием облученных тепловыделяющих элементов атомной электростанции мощностью 2 млн. квтп можно судить но данным, приведенным в табл. 9.  [c.203]

Способ прокатки металлических порошков заключается в подаче в зазор между двумя горизонтально расположенными валками металлического порошка или смеси с неметаллическими элехментами. При вращении валков происходит обжатие и вытяжка порошка в ленту или полосу определенной толщины. Для увеличения прочности ленты из порошков после проката во избежание разрыва ее пропускают через проходную печь для спекания, после чего производят дальнейшую прокатку для придания ленте нужной толщины. Большое значение этот метод имеет для производства тонких пластин из твердых сплавов, фрикционных полос и лент, тепловыделяющих элементов атомных реакторов н других трудно-получаемых при обычных способах изготовления пзделий. Способом прокатки между валками металлических порошков можно получать однослойные, многослойные пористые и беспористые ленты, полосы, прутки, проволоку диаметром от 0,25 до нескольких миллиметров, применяемые в различных производствах.  [c.508]

В то же время существуют технические объекты, создание которых было бы невозможно без разработки специальных материалов, альтернативы которым может и не существовать и, приходится мириться с их, иногда, даже чрезвычайно высокой стоимостью. Это материалы космической техники (например, керамика ракетных сопел и газовых рулей), атомной промышленности (например, циркониевые оболочки тепловыделяющих элементов атомных реакторов, гадолипиевые экраны нейтронной защиты и т.д.).  [c.16]

Области применения. Вследствие высокой удельиой прочности магниевые сплавы нашли широкое применение в авиастроении (колеса шасси, различные рычаги, корпуса приборов, фонарн н двери кабин и т. д.), ракетной технике (корпуса ракет, обтекатели, топливные н кислородные баки, и др.), электротехнике и радиотехнике (корпуса приборов, телевизоров и т. д.), в текстильной промышленности (бабины, шпульки, катушки и др.) и других отраслях народного хозяйства. Благодаря способности поглощать тепловые нейтроны н не взаимодействовать с ураном, магниевые сплавы используют для изготовления оболочек трубчатых тепловыделяющих элементов в атомных реакторах  [c.342]


Работа атомных электростанций существенно отличается от условий работы тепловых электростанций, так как мощность реактора может меняться в весьма широких пределах, и ограничивается она только условиями отвода теплоты от тепловыделяющих элементов. Тесная связь работы реактора и паросилового контура определяет выбор всех основных параметров атолпюй электростанции. Технико-экономнческнй и терлюдипалн1ческп1 1 анализ циклов позволяет выбрать наиболее целесообразную схему атомной электростанции.  [c.322]

При конструировании парогенерирующей аппаратуры очень часто возникает необходимость в расчете коэффициента теплоотдачи при поверхностном кипении. Например, тепловыделяющие элементы в некоторых видах атомных реакторов, сопла реактив-пых двигателей и поверхности нагрева ряда других теплообменных устройств охлаждаются кипящей водой, температура которой в ядре потока -ниже температуры насыщения. Часть поверхности парогенерирующих труб прямоточных паровых котлов также охлаждается водой, недогретой до температуры насыщения. На эко-  [c.260]

Во многих теплообменных устройствах современной энергетики и ракетной техники поток теплоты, который должен отводиться от по- верхности нагрева, является фиксированным и часто практически не зависит от температурного режима теплоотдающей поверхности. Так, теплоподвод к внешней поверхности экранных труб, расположенных в топке котельного агрегата, определяется в основном за счет излучения из топочного пространства. Падающий лучистый поток практически не зависит от температуры поверхности труб, пока она существенно ниже температуры раскаленных продуктов сгорания в топке. Аналогичное положение имеет место в каналах ракетных двигателей, внутри тепловыделяющих элементов (твэлов) активной зоны атомного реактора, где происходит непрерывное выделение тепла вследствие ядерной реакции. Поэтому тепловой лоток на поверхнасти твэлов также является заданным. Он является заданным и в случае выделения теплоты при протекании через тело электрического тока.  [c.322]

На специальных заводах ведется также изготовление тепловыделяющих элементов ( твэлов ) для реакторов. Обычно выполняемые в виде стержней из урана, плутония, их окислов, карбидов или сплавов с другими материалами, твэлы помещаются в стальные, алюминиевые или какие-либо другие герметичные оболочки, предохраняющие ядерное тоцливо от коррозии и препятствующие поступлению радиоактивных осколков деления ядер во внешнюю среду. Производство твэлов составляет одну из существенных отраслей атомной промышленности.  [c.163]

Исследовательский реактор ИРТ (рис. 46) тепловой мощностью 2000 кет с максимальным потоком медленных(тепловых) нейтронов 2,3 0 нейтр1см сек относится к группе простых, надежно действующих и недорогих бассейновых водо-водяных реакторов, работающих на обогащенном уране-235. Активная зона его содержит около 4 кг ядерного горючего, выполнена из графитовых блоков со стержневыми трубчатыми тепловыделяющими элементами, имеет графитовый отражатель и расположена на дне открытого алюминиевого бассейна глубиной 7,8 м, окруженного защитным бетонным с.лоем и заполненного водой, выполняющей двоякую функцию — замедлителя нейтронов и теплоносителя, отводящего тепло из реактора в теплообменник. Первый реактор этого типа сооружен в 1957 г. в Институте атомной энергии в Москве. Двумя годам и позднее такой же реактор введен в эксплуатацию в Институте физики Академии наук Грузинской ССР в Тбилиси в да.льнейшем они были построены во многих других исследовательских центрах СССР (в Риге, Минске, Киеве и др.) и за пределами нашей страны.  [c.169]

В отличие от ранее построенных атомных электростанций на ней впервые в мировой реакторной практике был осуществлен цикл с ядерным перегревом пара. Две группы технологических каналов ее графито-водяного кипящего реактора по конструктивному исполнению блиэки к технологическим каналам реактора Обнинской АЭС, но количество их увеличено и каждый снабжен шестью тепловыделяющими элементами из уранового сплава, обогащенного до 1,3% ураном-235. По трубкам этих элементов в каналах испаряющей группы под давлением 150 атм циркулирует вода первичного контура двухконтурной коммуникационной схемы, нагреваемая до температуры кипения. Образующаяся паро-водяная смесь поступает в сепаратор, в котором происходит разделение пара и воды. Затем пар направляется в змеевики парогенератора и, отдавая тепло воде вторичного контура, конденсируется. На выходе из змеевиков конденсат смешивается с водой, отводимой из сепаратора, проходит через водоподогреватель вторичного контура и, наконец, вновь подается циркуляционными насосами в испаряющие каналы реактора. Пар, получаемый в парогенераторе, проходит через реактор по каналам пароперегревательной группы, нагреваясь до температуры 500° С, и затем поступает в турбину.  [c.177]

Проектные решения, принимавшиеся для первой очереди строительства Ново-Воронежской АЭС, выбирались с некоторой осторожностью и с дополнительными запасами прочности, так как проектировщики не располагали еще достаточным опытом строительства крупных промышленных атомных электростанций. При сооружении первого блока станции предусматривалась экспериментальная проверка действия водо-водяного энергетического реактора большой мощности в эксплуатационных условиях. Применительно к полученным опытным данным и с учетом выявленных в ходе эксплуатации недостатков на строительстве второго блока той же АЭС сооружается более совершенный по конструкции и более мощный водо-водяной реактор. Сохранив для него те же размеры корпуса, какие были приняты для реактора первого блока, проектировщики увеличили давление циркулирующей в нем воды до 120 атм и довели число тепловыделяющих элементов до 127 в каждой кассете, предусмотрев получение полезной электрической мощности в 365 тыс. квт .  [c.178]

Реактор этот тепловой мощностью 1 млн. кет и номинальной электрической мощностью 350 тыс. кет будет работать на ядерном горючем из спеченной смеси двуокиси нлутония (81%) и урана-238 (19%), помещенной в стальных трубках тепловыделяющих элементов. Его активная зона имеет диаметр 1,5 л и высоту 1,06 м. Теплоносителем в первичном контуре принят жидкий (расплавленный) натрий с температурой на входе в реактор 300° С и на выходе 500° С. Пар, образующийся в парогенераторе вторичного контура, поступает к рабочим агрегатам с температурой 430° С под давлением 50 атм Постройка реактора предпринята на атомной электростанции, сооружаемой в г.Шевченко (на полуостровеМангышлак в восточной части Каспийского моря) и предназначенной для выполнения двух функций выработки 150 тыс. кет электроэнергии и опреснения морской воды для промышленных и бытовых нужд в количестве до 150 тыс. в сутки. Такое комплексное использование ядерной энергии снижает строительные и эксплуатационные затраты на производство электроэнергии и опреснение воды и будет способствовать решению проблемы освоения засушливых и безводных земель — одной из актуальных народнохозяйственных проблем.  [c.179]

Характерное для ядерного топлива сосредоточение огромных количеств энергии в тепловыделяющих элементах малого объема и веса, возможность получения высокой температуры нагрева рабочего тела, значительное увеличение радиуса действия транспортных средств и продолжительности работы их силовых (тяговых) установок без пополнения топливных запасов открывают большие перспективы использования атомной энергии в наземном транспорте, авиации и космонавтике. Однако в транспортных атомных энергетических установках этой группы пока еще необходимо применение тяжелых экранирующих оболочек весом 20—100 т для защиты обслуживающего персонала от ядерных излучений, поэтому создание соответствующих компактных конструкций сопряжено с проведением больших исследовательских р21б0Т.  [c.185]


В начале 60-х годов Институтом атомной энергии имени И. В. Курчатова совместно с другими научно-исследовательскими институтами была разработана первая энергетическая установка с ядерным реактором и прямым получением электроэнергии. В этой установке, получившей название Ромашка (рис. 55), впервые осуществлена оригинальная и простая конструктив-наьс схема, предусматривающая обт-единение в одном агрегате высокотемпературного реактора на быстрых нейтронах и термоэлектрического генератора электрической мощностью 0,5 кет. В активной зоне реактора, окруженной бериллиевым отражателем, помещены тепловыделяющие элементы (пластины из дикарбида уранаиСг с 90%-ным обогащением по урану-235) общим  [c.185]


Смотреть страницы где упоминается термин Тепловыделяющие элементы атомных : [c.227]    [c.229]    [c.6]    [c.321]    [c.365]    [c.251]    [c.324]    [c.66]    [c.266]    [c.283]    [c.227]    [c.914]    [c.60]    [c.429]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.0 ]



ПОИСК



Атомный вес

Тепловыделяющие элементы

Тепловыделяющие элементы атомных энергоустановок



© 2025 Mash-xxl.info Реклама на сайте